
A Domain-Specific Probabilistic Programming Language for
Reasoning about Reasoning (or: a memo on memo)

KARTIK CHANDRA and TONY CHEN,MIT, USA
JOSHUA B. TENENBAUM and JONATHAN RAGAN-KELLEY,MIT, USA

The human ability to think about thinking (“theory of mind”) is a fundamental object of study in many
disciplines. In recent decades, researchers across these disciplines have converged on a rich computational
paradigm for modeling theory of mind, grounded in recursive probabilistic reasoning. However, practitioners
often find programming in this paradigm extremely challenging: first, because thinking-about-thinking is
confusing for programmers, and second, because models are extremely slow to run. This paper presents
memo, a new domain-specific probabilistic programming language that overcomes these challenges: first, by
providing specialized syntax and semantics for theory of mind, and second, by taking a unique approach to
inference that scales well on modern hardware via array programming. memo enables practitioners to write
dramatically faster models with much less code, and has already been adopted by several research groups.

1 INTRODUCTION
The vitality of language lies in its ability to limn the actual, imagined and possible lives of its speakers, readers, writers.

Toni Morrison, Nobel Lecture for Prize Awarded in Literature, 1993

The sentence “Mary thought she saw a ghost” has a main clause that is true (“Mary thought”) and an embedded clause that is
false (“she saw a ghost”). Such syntax may give learners the logical tools for understanding the false beliefs of others.

Pyers and Senghas [108]

Human beings have the capacity not only to think, but to think about thinking: our minds can
reason recursively about other minds. This remarkable ability, called “theory of mind,” underlies
nearly everything we do: from playing a game, to explaining a concept, persuading a jury, initiating
a collaboration, consoling a friend, recognizing a misconception, or waging a war.

Because theory of mind is so central to the human experience, many disciplines have sought to
understand it through computational models. These disciplines include cognitive science [12, 13,
128], social psychology [2, 3, 15, 35, 77, 80, 138], linguistics [76, 87, 118, 122, 139], ethics [91, 111, 112],
and behavioral economics [8, 27, 86, 123]. Such models are often applied to engineer real-world
systems in robotics [45, 50, 101], education [29, 113, 120], human-computer interaction [31, 38],
program synthesis [1, 106, 130], and computer graphics [28, 33].

Interestingly, models across these many disciplines are often more alike than they are different.
They are united by recurring motifs like Bayesian inference (because minds hold beliefs under
uncertainty), decision theory (because minds act rationally to pursue their goals), and recursion
(because minds think about other minds). Textbooks from various disciplines introduce in similar
ways how these motifs emerge and operate when modeling minds [47, 67, 69, 90, 96, 118]. We ven-
ture, then, that there is a whole programming paradigm lurking here—a probabilistic programming
paradigm, which we call the “Recursive Rationality” (RR) paradigm.
RR models can be implemented elegantly in probabilistic programming languages (PPLs) by

using nested inference queries to model recursive Bayesian reasoning [125]. But—as we have
concluded from many years of collaborations with practitioners—programming in the RR paradigm
remains extremely challenging, even with the best of today’s PPLs. As is often the case with
programming, the challenges lie broadly along two axes: correctness and efficiency. The problem
with correctness is a matter of abstractions. Theory of mind comes with a rich vocabulary of
concepts (verbs like believe, think, see, do, want, imagine), but most PPLs only come with a small set

2025-01-08 15:16. Page 1 of 1–26.

2 Kartik Chandra, Tony Chen, Joshua B. Tenenbaum, and Jonathan Ragan-Kelley

of primitives (verbs like sample, infer, condition). Programmers must translate from the former to the
latter, but because there is no way to check if semantics are preserved during the translation, they are
often bitten by subtle bugs, like accidentally having one agent “mind-read” another agent by mixing
variables that “belong” to different minds. The problem with efficiency is that thinking about
thinking leads to a combinatorial explosion in possible world states (not only in a single mind, but
in possible minds imagined by other minds...), which in turn leads to extremely slow inference. We
believe these two issues are serious obstructions to scientific progress: across disciplines, scientists
typically need weeks of implementation work and days of compute to test their ideas.

In this paper, we address these issues with a new domain-specific PPL specialized for the RR para-
digm, which we call memo (“mental models”). In particular, we make the following contributions:

(1) We recognize a distinct class of bugs faced by RR practitioners (§1.1.1), and present a
language whose syntax and semantics protect users from such bugs (§3.1).

(2) We characterize the scalability challenges faced in practice by RR practitioners (§1.1.2), and
address them by noticing that RR models are particularly well-suited for acceleration on
modern hardware (§1.2.2). We thus take a unique approach to inference: we lower models
to array programs that can be compiled to fast parallel code (§3.2). Our inference algorithm
is end-to-end differentiable, enabling rapid parameter fitting by gradient descent.

(3) Through several case studies of classic RR models, we show that memo’s design decisions
enable practitioners to write dramatically faster models with far less code compared
to expert-written implementations in existing general-purpose PPLs (§4.1).

(4) We make possible new, exotic kinds of models that RR practitioners are increasingly
interested in: models that efficiently integrate with the broader deep learning ecosystem
(§4.3.1), and models that reflect on the computational cost of performing inference (§4.3.2).

(5) We release memo as open-source software (https://github.com/kach/memo). memo has
already been adopted by several research groups, delivering speedups of several orders
of magnitude, and enabling ambitious new extensions to their models (§4.2).

In the rest of this introduction, we discuss the two key challenges that motivated us to design memo
(§1.1), and preview the two key insights behind memo’s design (§1.2). We then introduce memo by
example (§2), study its implementation (§3), and evaluate it through a series of case studies (§4).

1.1 Motivating memo: the two challenges
1.1.1 Correctness. Correctly implementing RR models is difficult for many reasons. Perhaps most
obviously, situations involving many agents and recursive layers can easily get muddled and
confusing (see for instance this clip from the sitcom Friends: youtube.com/watch?v=a4CS2tCjAgk).

Yet even for simple models that researchers fully understand, implementing them in code can be
tricky and fraught. One simple class of common bugs is caused by errors in implementing Bayesian
calculations: many researchers implement inference by hand in R or MATLAB, where it is easy to
(e.g.) forget to normalize a probability distribution. Such issues can be addressed by using PPLs to
automate nested inference [125], so we do not say more about them here.

The more interesting class of bugs occurs even when using PPLs. While existing PPLs guarantee
that probabilistic computations will be mathematically correct (according to the PPL’s semantics),
they do not guarantee that the computations will bemeaningful with respect to our basic intuitions
about agency. As we discussed earlier, when programming in the RR paradigm using a PPL we have
to translate our intuitive “mental language” of agency (believe, think, see, do, want, imagine, . . .)
to the probabilistic programming language (sample, condition, infer, . . .). This translation may
introduce subtle bugs that cause models to violate our basic intuitions about agency.
Let us take a motivating example. A common pattern in RR models is to have an agent make a

choice based on some utility function. Concretely, suppose one morning Alice chooses a restaurant

2025-01-08 15:16. Page 2 of 1–26.

https://github.com/kach/memo
https://www.youtube.com/watch?v=a4CS2tCjAgk

A Domain-Specific Probabilistic Programming Language for Reasoning about Reasoning (or: a memo on memo) 3

for a dinner reservation, weighing the quality and cost of a meal there. Traditionally, such decision-
theoretic situations are encoded in PPLs by sampling the choice uniformly at random, and then
factoring on the agent’s utility function [47]. For example, in WebPPL [66], we might write:
var r = sample(Uniform(Restaurants));

factor(quality(r) - cost(r));

The factor statement causes inference to favor execution paths with high utility (in the spirit of
“planning as inference” [25]). Hence, inferring a distribution over 𝑟 predicts Alice’s behavior: she
prefers better, cheaper restaurants, and is indifferent among comparable ones.
Unfortunately, this “spooky action at a distance” between sample and factor can lead to subtle

bugs. For example, suppose Alice slightly prefers outdoor restaurants over indoor ones (say, quality
11 vs. 10), but if it were to storm that evening, she would experience a very high cost for being
outdoors (say, a penalty of −100). We might expect to encode this additional desideratum by
factoring in a new random variable 𝑠 for the storm:
var r = sample(Uniform(Restaurants));

var s = sample(Bernoulli (0.5)); // suppose 50% chance of storm

factor ((outdoor(r) ? 11 : 10) + (s && outdoor(r) ? -100 : 0));

However, this seemingly innocent encoding of the modified scenario is actually incorrect. It
inadvertently gives “control” of environmental randomness to Alice, erroneously predicting that
Alice will make risky, overconfident reservations under the illusion that she can influence the
weather! In this case, even though our intuition says that Alice should play it safe and pick an indoor
restaurant, and even though picking an outdoor restaurant has dramatically lower expected utility
(−39 ≪ 10), WebPPL’s inference predicts that Alice is likely to pick an outdoor restaurant 58% of
the time. (See Levine [92, §2.3] for more on this issue in the context of reinforcement learning.)
By analogy to “perturbation confusion” in automatic differentiation [121], we might call such

bugs “perpetration confusion”: confusion about which agent is responsible for making which choices.
As we will see below, our proposed solution to perpetration confusion is analogous to Siskind and
Pearlmutter’s solution to perturbation confusion: “tagging” choices with agents. We will show a
real-world example of perpetration confusion, and how memo addresses it, in Section 4.1.2.

1.1.2 Efficiency. RR models are notoriously slow to evaluate, largely because of the combinatorial
explosion of possible world states in different agents’ mental models (including in their mental
models of each other!). This severely limits the scope and scale of problems that researchers consider.
Nested inference also poses its own challenges. When nesting approximate inference methods,

the “inner” inference algorithm must produce sufficiently precise results for the “outer” inference
algorithm to use. Typically this requires increasing the number of samples taken, which dramatically
slows down critical inner loops (see a real-world example of this in §4.2.1). Selecting inference
algorithms for each recursive level is also a serious burden on programmers, especially as the
number of hyperparameters to tune increases.

Finally, in practice empirical scientists not only run models, but also fit models’ free parameters
to experimentally-collected data. This is typically done by grid search, which can require millions
of model evaluations to fit even very simple models (exponential in the number of parameters).
Researchers may additionally wish to fit the model for multiple different experimental conditions
(“treatment groups”), fit multiple different ablations of the model, and cross-validate their results by
independently fitting the model to multiple different subsets of the data. These needs dramatically
amplify the cost of a single model evaluation, making even relatively simple models quite costly
to work with. Researchers we talked to often reported that inference alone takes on the order of
minutes for their models, and model fitting and cross-validation adds up to days of computation.

2025-01-08 15:16. Page 3 of 1–26.

4 Kartik Chandra, Tony Chen, Joshua B. Tenenbaum, and Jonathan Ragan-Kelley

These issues make efficiency a fundamental bottleneck to productivity and progress: the cost of
model fitting makes it difficult to tinker with models, test intuitions, and iterate on ideas. It also
forces researchers to scale down models, or to perform a less thorough hyperparameter sweep
than they would like. Of course, grid search and cross-validation are “embarrassingly parallelizable”
jobs and can be accelerated dramatically on modern hardware. But cognitive scientists typically
lack the expertise needed to recognize and take advantage of even very-low-hanging opportunities
for performance optimization. Similarly, gradient-based optimization would undoubtedly be more
efficient than grid search, but very few PPLs support automatic differentiation through inference.

Beyond these practical issues, there is also a scientific question at stake. RR models may predict
human intuitions very well, but they are sometimes critiqued for being too computationally
expensive to be a plausible model of how the human mind produces those intuitions [97, 134]. The
possibility of faster implementations gives scientists a way to resolve this tension.

1.2 memo’s design: the two insights
1.2.1 On correctness: respecting our “metatheory of mind”. As hinted above, our insight about
correctness is to provide dedicated syntax for associating random choices with agents.
In memo, we would implement the restaurant-choice problem by writing that Alice chooses the
restaurant, and theworld chooses the weather (see supplementarymaterials for full implementation).
This specialized syntax allows us to statically catch and prevent bugs like perpetration confusion.

More generally, by making agency explicit in the syntax and semantics of the language, memo
can statically enforce a wide variety of conditions in our intuitive “metatheory of mind,” ensuring
that models are consistent with basic principles of agency. For example, memo enforces that there is
no inadvertent “mind control” or “mind reading” in models. We will discuss memo’s static semantics,
and how they reify key principles of agency, in Section 3.1.

1.2.2 On efficiency: “PPL meets APL”. Our insight about efficiency is that the vast majority of
real-world RR models are amenable to exact enumerative inference: structurally, they require only
a finite, statically-known sequence of samples from discrete distributions with modest cardinality.
Conveniently, recent work has shown that exact enumerative inference in such models can often
be compiled to efficient array programs, where the arrays represent joint distributions over discrete
domains [103, 104]. This suggests a possible opportunity to dramatically accelerate RR models.
We can see a hint that we are on the right track by looking at how researchers describe RR

models. Many classic models are discussed in the literature in two complementary ways: first, in
the language of recursive trees, and second, in the language of arrays. For example, the famous
value iteration algorithm is sometimes described as memoized graph search [16], and other times
as an iterated operation on a value table [19]. Similarly, the Rational Speech Acts model (discussed
in-depth below) is sometimes described as nested inference [52], and other times as operations on
a “truth table” [106]. Economists too speak in terms of both “game trees” and “payoff matrices.”
With this in mind, memo is designed to compile nested enumerative inference to array

programs. This offers users a whole host of immediate benefits: (1) inference is exact and has
no hyperparameters; (2) array programs with simple loop structures are easy to compile to fast,
optimized code; (3) inference can be parallelized for free, both within a single evaluation (over
possible world states) and when fitting parameters (over batches of data); (4) existing array program
compilers can accelerate inference on GPUs and other hardware platforms; (5) inference
natively supports automatic differentiation, which dramatically accelerates parameter fitting;
and (6) models can seamlessly interoperate with the host array language’s library ecosystem,
including packages for deep learning, data visualization, and more. We will discuss how memo
compiles models to array programs in Section 3.2.

2025-01-08 15:16. Page 4 of 1–26.

A Domain-Specific Probabilistic Programming Language for Reasoning about Reasoning (or: a memo on memo) 5

2 A DEMO OF MEMO
We will introduce memo with the “drosophila” or “hello, world” of the RR paradigm: the highly-
influential Rational Speech Acts (RSA) framework from cognitive linguistics [43, 52, 54, 64]. RSA
models how people make pragmatic inferences that go beyond the literal semantics of language [68].
We will consider a classic experiment that demonstrates this, and model the results using RSA.

(To be clear, our goal is not to promote RSA over competing theories—RSA does have its critics
[55, 58, 140]. Here, we are only using RSA as a paradigmatic example to introduce memo.)

2.1 Introducing the Rational Speech Acts framework, our running example

🧑🦰

?
?

?

🧑🦱
green

She probably
meant .

🧑🦱

r u

Fig. 1. The listener infers
the speaker’s referent 𝑟
from their utterance 𝑢.

Consider the following game, first proposed by philosopher Lewis [93].
Imagine three objects: a green square , a green circle , and a pink
circle . Your friend is tasked with asking you to pick one of them, but
can only use the words “green,” “pink,” “square,” or “round.” Suppose your
friend says “pink” — which object would you pick? Most people pick the
pink circle . Similarly, if your friend says “square,” most people pick the
green square . So far, so good. But now, suppose your friend says “green.”
This is trickier, because both the green square and green circle are
consistent with the literal denotation of the word “green.” Yet a surprising,
replicable finding from cognitive linguistics is that most people have a
pragmatic preference for the green circle over the green square — for
example, in one study 64% of people preferred the former [109]. What
is going on here? It seems that people reason that if the friend wanted , they could have said
“square” (unambiguously) rather than “green” (ambiguously). Hence, given that they chose the
risky, ambiguous utterance “green,” they probably meant to distinguish the two circles and .

The RSA framework seeks to formalize this intuition in precise computational terms. It analyzes
such situations as speakers (𝑆) and listeners (𝐿) reasoning recursively about each other under
uncertainty. Let us say that initially, the listener has some prior belief about the speaker’s object
𝑝prior (𝑟), where 𝑟 stands for referent (the object the speaker intended to refer to). Given the speaker’s
utterance𝑢, the listener can apply Bayes’ rule to infer 𝑝𝐿 (𝑟 | 𝑢) ∝ 𝑝𝑆 (𝑢 | 𝑟) ·𝑝prior (𝑟), where 𝑝𝑆 (𝑢 | 𝑟)
is the likelihood of the speaker saying𝑢 to refer to 𝑟 . Critically, a listener might think that a rational,
strategic speaker would choose 𝑢 to maximize the chances that the listener infers 𝑟 correctly. Hence,
𝑝𝑆 may itself recursively depend on 𝑝𝐿 . (This is the essence of the “recursive rationality” paradigm.)

2.2 First steps: expressing the “base case” of a naïve listener in memo
To express this model in memo, we will start by implementing the “base case” of a naïve listener
who thinks the speaker simply chooses a true utterance uniformly at random. Let U = ["green",

"pink", "square", "round"] be the space of possible utterances, R = [, ,] be the space of
possible referents, and let the Boolean function denotes(u, r) be true iff 𝑢 ∈ 𝑈 describes 𝑟 ∈ 𝑅. Our
naïve listener will assume that 𝑝𝑆 (𝑢 | 𝑟) ∝ [denotes(𝑢, 𝑟)]; that is, the speaker chooses an utterance
uniformly at random among those that describe the referent. Finally, for the sake of simplicity, let
𝑝prior (𝑟) ∝ 1, i.e. assume that the speaker is equally likely to refer to each of the three referents.

memo is at heart a language for computing arrays of numbers. In this case, we wish to compute
the probability table of 𝑝𝐿 (𝑟 | 𝑢), which is a |𝑈 | × |𝑅 | array. We thus begin our model by stating
these dimensions. This notation is by analogy to array indexing: L is a table with dimensions 𝑢 and
𝑟 , and memo will populate this table by running the model for each 𝑢 and 𝑟 .

@memo

def L[u: U, r: R]():

2025-01-08 15:16. Page 5 of 1–26.

6 Kartik Chandra, Tony Chen, Joshua B. Tenenbaum, and Jonathan Ragan-Kelley

This model involves two agents: the listener and speaker, where the listener has a mental model of
the speaker. We express this using the compound statement listener: thinks[speaker: ...].
As discussed earlier, the naïve listener thinks that the imagined speaker chooses the true referent
𝑟true based on 𝑝prior (𝑟), and then 𝑢 uniformly among denotationally consistent referents. In memo,
we write this as follows. (Here, the keyword “wpp” stands for “with probability proportional to,”
analogous to the symbol “∝” in expressions like 𝑝𝑆 (𝑢 | 𝑟) ∝ [denotes(𝑢, 𝑟)].)

listener: thinks[

speaker: chooses(𝑟true in R, wpp =1), # uniform prior

speaker: chooses(𝑢said in U, wpp=1 if denotes(𝑢said, 𝑟true) else 0)

]

Notice how—unlike a traditional PPL—memo associates each random choice with the agent making
that choice. The variable 𝑟true does not exist in the listener’s scope—only in the scope of the
listener’s model of the speaker. It is thus a type error for the listener to reference 𝑟true directly in an
expression. However, the listener can reason about computation involving 𝑟true in the speaker’smind.
For example, the expression speaker[𝑟true] (or its syntactic sugar speaker.𝑟true) gives a random
variable representing the speaker’s (unknown-to-listener) referent, and speaker[𝑟true ==]

gives a binary random variable representing whether or not the referent is .
Now that we have established the listener’s mental model of the speaker, we can move on to the

main events. First, the listener observes the speaker’s utterance to be 𝑢, and updates their belief
accordingly. Then, the listener picks 𝑟pick proportional to their confidence that 𝑟pick is the speaker’s
true referent 𝑟true; that is, with probability proportional to Pr[speaker.𝑟true == 𝑟pick].

listener: observes [speaker.𝑢said] is 𝑢

listener: chooses(𝑟pick in R, wpp=Pr[speaker.𝑟true == 𝑟pick])

It is worth pausing here to consider what would happen if we omitted Pr[...] in the line above.
From the listener’s perspective, the expression speaker.𝑟true == 𝑟pick is a binary random variable
because speaker.𝑟true is unknown. It does not make sense for an agent to choose based on a
probability they cannot even evaluate! So, without Pr[...], memo statically raises an error at
that line. However, even though that expression’s actual boolean value is unknown to the listener,
its probability of being true is known. Hence, with Pr[...], memo accepts the statement. In this
way, memo statically reasons about knowledge and uncertainty, ensuring that expressions that
span multiple agents’ frames of minds are well-formed and meaningful. We discuss memo’s static
reasoning, and how it prevents bugs like perpetration confusion (§1.1.1), in Section 3.1.

Finally, to compute the probability table for 𝑝𝐿 , we return the probability that the listener’s 𝑟pick
is equal to 𝑟 . (Recall from above that “𝑟” was defined as the second axis of the returned array.)

return Pr[listener.𝑟pick == 𝑟]

We can run this model in Python by calling L() like an ordinary function. As expected, we get a
4 × 3 array representing the probability table of 𝑝𝐿 (𝑟 | 𝑢) (as a sanity-check, all rows sum to 1).
>>> L()

#

[[0.5, 0.5, 0.], # "green"

[0. , 0. , 1.], # "pink"

[1. , 0. , 0.], # "square"

[0. , 0.5, 0.5]] # "round"

For the unambiguous utterances (“pink” and “square”), the model correctly picks out and
respectively, whereas for the ambiguous utterances (“green” and “round”) it has no preference

2025-01-08 15:16. Page 6 of 1–26.

A Domain-Specific Probabilistic Programming Language for Reasoning about Reasoning (or: a memo on memo) 7

between the two denotationally-consistent possibilities. This is contrary to our intuitions, and to
Qing and Franke’s data, suggesting that we are not done yet...

2.3 Completing the model: adding recursive reasoning
Now, let us see what happens if the listener thinks the speaker is themselves thinking about the
listener (who, indeed, might recursively be thinking about the speaker, and so on). We extend our
code to model this in three steps, summarized in Figure 2.

First, we parametrize the listener by ℓ , which denotes the recursive level of the current listener,
such that ℓ = 0 is equivalent to the naïve listener. (Notice that the parameter ℓ is syntactically
distinct from the axes 𝑢 and 𝑟 , because ℓ does not affect the shape of the array to be computed.)
Second, we modify the speaker to recursively refer to the listener at level ℓ − 1 when ℓ > 0. This is
as easy as referring to 𝐿 with the appropriate array indexing notation: we can write L[u, r](ℓ - 1).
Third, following standard practice in decision theory [53, 95], we model the speaker as choosing 𝑢
from a softmax over the listener’s predicted posterior belief. We thus introduce a second parameter,
𝛽 , to modulate the temperature of the softmax. For high 𝛽 , the speaker approaches deterministically
choosing the optimal 𝑢, whereas for low 𝛽 the speaker approaches a uniform choice.
Running the updated model with ℓ = 1 and 𝛽 = 1.0 shows the pattern we expect: a slight

preference for the green circle over the green square for utterance “green.”
>>> L(ℓ=1, 𝛽 =1.0)

#

[[0.43 , 0.57, 0.], # "green"

[0. , 0. , 1.], # "pink"

[1. , 0. , 0.], # "square"

[0. , 0.57, 0.43]] # "round"

Compared to an idiomatic textbook implementation [118] of this model in WebPPL, our memo
implementation is 2× shorter (10 vs. 20 lines, excluding helpers like denotes) and 7× faster (80µs
vs. 550µs). It is also easier to read: for example, the WebPPL version confusingly uses Infer and
uniformDraw to model the speaker’s choice of𝑢said, even though the speaker is not really performing
inference, and certainly not drawing 𝑢said uniformly.

2.4 Using our model: a peek into the scientist’s workflow
As we discussed in Section 1.1.2, an RR practitioner’s work does not end with expressing a model:
they typically go on to fit it to data and validate it. Let us see what this looks like with memo.

1 @memo
2 def L[u: U, r: R](ℓ, 𝛽):
3 listener: thinks[
4 speaker: chooses(𝑟true in R, wpp =1),
5 speaker: chooses(𝑢said in U, wpp=
6 denotes(𝑢said, 𝑟true) * (1 if ℓ ==0 else exp(𝛽*L[𝑢said, 𝑟true](ℓ -1, 𝛽))))
7]
8 listener: observes [speaker.𝑢said] is u
9 listener: chooses(𝑟pick in R, wpp=Pr[speaker.𝑟true == 𝑟pick])
10 return Pr[listener.𝑟pick == r]

Fig. 2. A complete implementation of RSA in memo. Highlighted fragments represent changes required to go
from a naïve listener (§2.2) to a full recursively-reasoning listener (§2.3).

2025-01-08 15:16. Page 7 of 1–26.

8 Kartik Chandra, Tony Chen, Joshua B. Tenenbaum, and Jonathan Ragan-Kelley

green
square

green
circle

pink
circle

Inferred referent r

0.0

0.5

1.0

Pr
ob

ab
ilit

y

Final model fit
humans
model, =1
model, =0

0 1 2 3
beta

0

2

M
SE

 (%
)

Grid search

0 10 20
Step #

0

2

M
SE

 (%
)

Gradient descent

Fig. 3. Using memo, scientists can
easily fit models by parallelized grid
search (left) or gradient descent (right),
and visualize results (bottom).

Recall that Qing and Franke found that 64% of people choose
the circle for utterance “green.” At 𝛽 = 1.0 our model predicts
57%: close but not perfect. Can we do better by optimizing
𝛽? Let us define a mean-square-error loss between the model
predictions L(1, 𝛽) and the dataset Y of human responses:
def loss(𝛽): return np.mean((L(1, 𝛽) - Y)**2). Typically,
researchers optimize such losses by slow, expensive grid
search. Fortunately, because memo is built on JAX, we can
use jax.vmap(loss) to search a large space of candidate 𝛽-
values in parallel. We can even use jax.grad(loss) to differen-
tiate through our loss function, and recruit existing gradient-
based optimizers (e.g. Adam) to rapidly find the best 𝛽 . Finally,
because arrays are natively supported across the scientific
Python ecosystem, we can plot the model against the human
data using the matplotlib library by directly passing model
output to library functions like plt.scatter or plt.bar.

Figure 3 illustrates fitting 𝛽 to Qing and Franke’s data by grid search (within 70ms) and gradient
descent (within 250ms), and shows a plot of the data against the best-fit model at ℓ = 1 and ℓ = 0.
Clearly, the model predicts human behavior well at ℓ = 1, whereas at ℓ = 0 the model’s predictions
differ significantly from humans. While more statistical analysis is certainly needed, this type of
result could be used to argue that people are reasoning at ℓ = 1 rather than ℓ = 0.

2.5 The rest of the language
This concludes our tour of memo. The full abstract syntax of the language is given in Figure 4. It
contains only a couple of constructs we have not yet encountered. We highlight them below.

2.5.1 Programming in the subjunctive mood. Agents often reason in terms of hypotheticals and
counterfactuals, asking “what if?” questions to guide their actions. There is strong evidence that
humans are performing this type of simulation when decision-making [17, 62, 145]. To model such
reasoning in memo, we introduce the imagine expression, which allows imagining events in a
temporary scope, and then evaluating an expression in that hypothetical world. (imagine is like an
IIFE in JavaScript, and can be desugared to memo primitives as a call to a freshly-generated model.)

2.5.2 Thinking about not thinking. Recent work in cognitive science has considered how agents take
into account the cost of thinking itself [94, 133]. For example, agents might use an approximation
when it is good enough that the marginal cost of additional thinking (in time, energy, memory,
etc.) is not worthwhile. Modeling “resource-rationality” has thus far been challenging because
it is difficult to reflect on the computational cost of inference in a typical PPL. memo provides a
construct for reflecting on computational cost by extracting the number of FLOPs needed from JAX’s
compile-time analysis. memo models can use this information to have agents make choices based
on resource considerations. We show an example of how this feature can be used in Section 4.3.2.

3 DESIGN & IMPLEMENTATION
We set out to create a language that helps scientists write correct and efficient RR models. In this
section, we will show how memo is designed to achieve these goals. We start by describing memo’s
front-end, explaining how the static semantics of the language ensure correctness with respect
to our intuitive notions of agency (§3.1). Next, we describe how memo models are compiled into
array programs to enable efficient inference (§3.2). Finally, we discuss practical considerations for
supporting RR practitioners, and how they influenced us (§3.3). We focus here on concrete, intuitive

2025-01-08 15:16. Page 8 of 1–26.

A Domain-Specific Probabilistic Programming Language for Reasoning about Reasoning (or: a memo on memo) 9

Statement 𝑠 F 𝑎 : chooses(𝑥 in 𝐷, wpp=𝑒) sampling
| 𝑎 : observes [𝑏.𝑥] is 𝑐.𝑦 conditioning
| 𝑎 : thinks [𝑠∗] recursive reasoning

Expression 𝑒 F ℓ static literal
| op(𝑒∗) primitive operator
| 𝑥 choice
| 𝑎[𝑒] query agent
| E [𝑒] expectation
| 𝑚 [𝑎.𝑥∗] (ℓ∗) memo reference
| imagine [𝑠∗, 𝑒] hypotheticals
| cost @ 𝑚 (ℓ∗) resource reflection

Static literal ℓ F 𝑛 numeric literal
| 𝜃 model parameter
| op(ℓ∗) primitive operator

Model 𝜇 F @memo def 𝑚[(𝑥 : 𝐷)∗] (𝜃∗) : 𝑠∗; return 𝑒

Fig. 4. The syntax of memo. Metavariables 𝑎, 𝑏, 𝑐 range over agents, 𝑥,𝑦 over names of choices, 𝑛 over real
numbers, 𝐷 over names of domains, 𝜃 over names of parameters, and𝑚 over names of models. Stars (∗)
denote comma-separated possibly-empty sequences. Pr, Var, and H (entropy) desugar in terms of E.

explanations. Concurrent work [5, anon. ref.] formalizes memo’s static and denotational semantics,
building on foundations laid by Zhang and Amin [143] for formalizing nested inference.

3.1 Front-end: tracking “frames of mind”
As we discussed in Section 1.2.1, memo is designed to make sure models are consistent with our
intuitions about agency in the real world. In this section, we will discuss how memo achieves this
by giving an overview of the static semantics of the language. Along the way, we will highlight four
basic principles of agency (marked 1 - 4), and explain how they are reified by memo’s design.

The central data structure in the memo compiler is the “frame of mind,” which tracks an agent’s
beliefs, along with that agent’s beliefs about other agents’ beliefs. To introduce frames, let us
continue our running example from Section 2: we will study step by step how frames evolve over
the course of compiling RSA. As shown in Figure 5, a frame consists of a set of agents (including
the self), those agents’ choices, and pointers to those agents’ own frames (thus forming a tree of
nested frames). Choices in an agent’s frame can be known or uncertain to that agent.

Panel A shows how every memo model begins: with an initial “root” frame, which we will call
the observer’s frame. The observer’s frame contains only the two variables 𝑟 and 𝑢, which are bound
by the axes declared in the top-level model definition (“def L[r: R, u: U]...”). These variables
are known to the observer: there is no uncertainty about their values.
Panel B shows what happens when we initialize the listener’s mental model of the speaker

(“listener: thinks[speaker: chooses(...)]”). memo creates a fresh frame for the listener, and
another fresh frame for the (listener’s model of the) speaker. The observer’s frame contains a
pointer to the listener’s frame, which in turn contains a pointer to the imagined speaker’s frame.
At this point, the speaker’s frame contains two variables 𝑟true and 𝑢said, which are both known to
the speaker because they were chosen by the speaker. However, in the listener’s frame those same
variables are uncertain, i.e. random variables. This brings us to the first principle of agency reified
by memo: the principle of 1 “no mind reading,” which is reflected in the fact that agents always
know their own choices, but are by default uncertain of choices other agents have made.

2025-01-08 15:16. Page 9 of 1–26.

10 Kartik Chandra, Tony Chen, Joshua B. Tenenbaum, and Jonathan Ragan-Kelley

listener's frame 🧑🦱

🧑🦰 speaker
🧑🦱 self rpick

observer's frame 👩🔬

🧑🦱 listener
👩🔬 self r u

rpick

rtrue usaid

speaker's frame 🧑🦰

🧑🦰 self rtrue usaid

after line 9, "listener: chooses(…)"

listener's frame 🧑🦱

🧑🦰 speaker
🧑🦱 self

observer's frame 👩🔬

🧑🦱 listener
👩🔬 self r u

rtrue usaid

speaker's frame 🧑🦰

🧑🦰 self rtrue usaid

after line 8, "listener: observes…"

listener's frame 🧑🦱

🧑🦰 speaker
🧑🦱 self

observer's frame 👩🔬

🧑🦱 listener
👩🔬 self r u

rtrue usaid

speaker's frame 🧑🦰

🧑🦰 self rtrue usaid

after line 6, "listener: thinks[…]"

observer's frame 👩🔬

👩🔬 self r u

after line 2, "def L[r: R, u: U](…):"

…

…

known choices

uncertain choices

(highlights changes)

agent's frame

conditioning

A B C D

Fig. 5. The memo compiler statically tracks nested “frames of mind” (§3.1). Here, we show in four stages how
frames evolve over the course of processing the RSA implementation shown in Figure 2.

Panel C shows the result of the listener observing speaker.𝑢said to be 𝑢. This statement has two
effects. First, in the listener’s frame, the status of speaker.𝑢said changes from uncertain to known.
Second, in the observer’s frame, the listener’s speaker.𝑢said gets linked to 𝑢 (this information is
stored in an auxiliary table in the observer’s frame). The observer now substitutes𝑢 for speaker.𝑢said
when modeling the listener’s computations. For example, from the observer’s perspective, the
boolean expression listener[speaker.𝑢said == "green"] is now equivalent to u == "green".

Notice that this is the only place in themodel where the listener’s speaker.𝑢said and the observer’s
𝑢 are related. We could also have written listener: observes [speaker.𝑢said] is 𝑤 , where𝑤 ≠ 𝑢.
This is by design. It reifies a second principle of agency: that 2 agents can acquire false beliefs.
For example, we can model a “man-in-the-middle” attack as listener: observes [speaker.𝑢said]

is attacker.𝑢fake. The listener would think that the speaker really said 𝑢fake, whereas the observer
would understand that the listener unwittingly received the attacker’s message. Consequently,
listener[speaker.𝑢said] and attacker.𝑢fake would become equivalent in the observer’s frame, but
not in the listener’s frame, which is oblivious to even the presence of an attacker. This reifies the
principle of 3 referential opacity of belief [56, 110].

Relatedly, notice that the observer’s frame does not contain any reference to the speaker’s 𝑟true or
𝑢said. This is also by design. The observer and listener do not have to have the same mental model of
the speaker. For example, the observer might think that in reality, the speaker is babbling randomly,
and there is no 𝑟true at all influencing the utterances. The listener may nonetheless be erroneously
interpreting the speaker’s utterances as intentional and attributing an 𝑟true being communicated
(see [44, 74]). Hence, 𝑟true should not appear in the observer’s frame, only in the listener’s.

Finally, Panel D shows what happens when the listener chooses 𝑟pick. Just like our discussion of
Panel B, we see that 𝑟pick appears in the listener’s frame as a known variable, and in the observer’s
frame as uncertain. Let us take this opportunity to study one last principle of agency reified by
memo. In Section 2.2 we discussed how it is important that the listener know the probabilities with
which they sample 𝑟pick. This constraint effectively says that there is 4 “no mind control.” If an
agent cannot compute why they are making a given choice, then it is as if someone else made the
choice for them. For example, if Alice (secretly) picks an ice cream flavor and expects Bob to choose
the same one, then her mental model of Bob effectively robs him of his free will. Situations like these
give rise to bugs like perpetration confusion (§1.1.1), and more generally to thorny philosophical

2025-01-08 15:16. Page 10 of 1–26.

A Domain-Specific Probabilistic Programming Language for Reasoning about Reasoning (or: a memo on memo) 11

paradoxes like Newcomb’s Problem [102, 135]. memo statically prevents this by tracking whether
expressions are known or unknown in an agent’s frame. Expressions are tainted as unknown if they
involve unknown choices (with the exception that E[𝑒] is known even if 𝑒 is unknown), and memo
enforces that agents know expressions they use to specify probabilities for their own choices.

3.2 Back-end: lowering memo to an array program
As we discussed in Section 1.2.2, RR models often only require discrete enumerative inference, and
are thus well-suited to be compiled to array programs. In the rest of this section, we will complete
our running example by explaining how memo compiles our RSA model to an array program.

The key idea is to maintain an array for each frame, which represents that agent’s current beliefs
about the world. The array has a separate dimension for each choice tracked in that frame, and its
entries give the joint probability of unknown choices conditioned on known choices. Figure 6 shows
how the array associated with the listener’s frame evolves over the course of three statements in
RSA (at ℓ = 0 for simplicity). We focus on the listener’s frame because it is the most interesting: the
observer and speaker have no uncertain choices, so their arrays are simply filled with ones.
The listener’s array 𝔏 is initialized as the rank-zero (i.e. dimensionless) array containing the

scalar 1: because the listener has not yet modeled any uncertain choices, there is vacuously only
one possible world state, to which the listener assigns probability 1.
Panel B1 shows what happens when the listener models the speaker’s choice of 𝑟true. First, 𝔏

is expanded with a new size-|𝑅 | dimension for 𝑟true, making it a 1D array (shown as a bar graph).
Next, memo evaluates the choose statement’s wpp expression (the likelihood) for each 𝑟true ∈ 𝑅 and
normalizes the result. In this case, the likelihood expression is the constant 1 (i.e. uniform), which
normalizes to 1/3 for the three referents in 𝑅. Finally, memo updates 𝔏 by multiplying it pointwise
with the normalized likelihoods to get [13 ,

1
3 ,

1
3]. This should be consistent with our intuitions: thus

far, the listener has uniform priors over the three possible referents the speaker may have in mind.
Panel B2 shows the same process unfold when the listener models the speaker choosing 𝑢said.

First, 𝔏 is expanded with a new size-|𝑈 | dimension for 𝑢said, making it a 2D array (shown as a
heatmap). Then, memo evaluates the likelihood expression denotes(𝑢said, 𝑟true) for each 𝑢said and
𝑟true and normalizes the result along the 𝑢said axis (notice that both of these operations are easily
parallelized on modern hardware). Finally, memo updates 𝔏 by multiplying it pointwise with the

listener's frame 🧑🦱

🧑🦰 speaker
🧑🦱 self

🧑🦱

rtrue usaid

speaker's frame 🧑🦰

🧑🦰 self rtrue usaid

after line 8, "listener: observes…"

listener's frame 🧑🦱

🧑🦰 speaker
🧑🦱 self

🧑🦱

rtrue usaid

speaker's frame 🧑🦰

🧑🦰 self rtrue usaid

after line 5, "speaker: chooses(u)"

B2 C

listener's frame 🧑🦱

🧑🦰 speaker
🧑🦱 self

🧑🦱

rtrue

speaker's frame 🧑🦰

🧑🦰 self rtrue

after line 4, "speaker: chooses(r)"

B1

Fig. 6. memo tracks each agent’s uncertainty, using arrays to represent conditional distributions (§3.2). Here,
we show how the listener’s beliefs evolve over the course of the RSA implementation shown in Figure 2.

2025-01-08 15:16. Page 11 of 1–26.

12 Kartik Chandra, Tony Chen, Joshua B. Tenenbaum, and Jonathan Ragan-Kelley

normalized likelihoods. The update to 𝔏 is thus given by:

𝔏←

denotes(𝑢said,𝑟true)︷ ︸︸ ︷
1 0 1 0
1 0 0 1
0 1 0 1

 ⊘
Normalizer →︷ ︸︸ ︷
2 . . .

2 . . .

2 . . .

︸ ︷︷ ︸
Likelihood 𝑝 (𝑢said |𝑟true)

⊙

current 𝔏︷ ︸︸ ︷
1/3 . . .

1/3 . . .

1/3 . . .

︸ ︷︷ ︸
𝑝 (𝑟true)

=


1/6 0 1/6 0
1/6 0 0 1/6
0 1/6 0 1/6

︸ ︷︷ ︸
𝑝 (𝑟true,𝑢said)

Here, rows correspond to referents (, ,) and columns to utterances (“green,” “pink,” “square,”
“round”); ⊘ and ⊙ denote pointwise operations, and ellipses denote NumPy-style broadcasting.
(memo uses broadcasting to minimize redundant computation and storage where possible. For
example, the normalizer need only be stored once for each row of 𝔏.)

Lastly, Panel C shows what happens when the listener observes the speaker’s 𝑢said. That choice
becomes known in the listener’s frame, and thus the listener must represent the conditional
distribution 𝑝 (𝑟true | 𝑢said). To do this, memo normalizes 𝔏 along the 𝑟true axis.

𝔏←

current 𝔏︷ ︸︸ ︷
1/6 0 1/6 0
1/6 0 0 1/6
0 1/6 0 1/6

︸ ︷︷ ︸
𝑝 (𝑟true,𝑢said)

⊘

Normalizer ↓︷ ︸︸ ︷
2/6 1/6 1/6 2/6
...

...
...

...

︸ ︷︷ ︸
𝑝 (𝑢said)

=


1/2 0 1 0
1/2 0 0 1/2
0 1 0 1/2

︸ ︷︷ ︸
𝑝 (𝑟true |𝑢said)

Notice that by mechanically following memo’s compilation rules, we have essentially recovered
“for free” the efficient array-based implementation of RSA described by Pu et al. [106]: alternating
row-wise and column-wise normalizations of an |𝑅 | × |𝑈 | array! We will see in Section 4.1.3 that
memo also recovers the classic tabular value iteration algorithm in the same way.
Using the array 𝔏, we can perform a variety of interesting calculations from the listener’s

perspective. For example, suppose we were interested in the listener’s confidence that 𝑟true is a
green shape, i.e. evaluating the expression Pr[green(𝑟true)] in the listener’s frame after the listener
observes𝑢said. The expression Pr[𝑒] desugars to E[𝑒] because the expectation of a Bernoulli random
variable is its probability. Our goal is thus to compute the expectation E[green(𝑟true) | 𝑢said] =∑

𝑟true green(𝑟true) · 𝑝 (𝑟true | 𝑢said). We can implement this computation as a tensor contraction. First,
we evaluate green(𝑟true) in each possible world state and assemble an array 𝑒 with the result. Then,
we contract 𝑒 with 𝔏 along dimensions representing uncertain variables. In this case, there is only
one uncertain dimension, so we can write this tensor contraction as matrix multiplication:

Pr[green(𝑟true)] =

green() = 1 . . .

green() = 1 . . .

green() = 0 . . .


⊤

︸ ︷︷ ︸
𝑒=green(𝑟true)


1/2 0 1 0
1/2 0 0 1/2
0 1 0 1/2

︸ ︷︷ ︸
𝔏=𝑝 (𝑟true |𝑢said)

=


1 0 1 1/2
...

...
...

...

︸ ︷︷ ︸
E[green(𝑟true)]

This tells us that to the listener, Pr[green(𝑟true)] depends on the observed 𝑢said: they think the
probability is 1 if they hear “green” (of course!), 0 if they hear “pink,” 1 if they hear “square” (the
only square referent is green), and 1/2 if they hear “round” (only one of the two circles is green).

Summary. Here are key takeaways from the previous two sections: Statically,memo maintains
a tree of frames, which track agents, their choices, and their knowledge or uncertainty about other
agents’ choices. chooses creates a choice that is known to the chooser but uncertain to the agent
modeling the chooser. observes causes an uncertain choice to become known to the observing agent.

2025-01-08 15:16. Page 12 of 1–26.

A Domain-Specific Probabilistic Programming Language for Reasoning about Reasoning (or: a memo on memo) 13

Agents must know the probabilities with which they make choices. These rules keep memo models
consistent with our intuitions about agency. Dynamically, memo maintains an array for each
frame, which represents that agent’s joint probability over uncertain choices conditioned on known
choices. The array has a dimension for each choice tracked in the frame. chooses introduces new
dimensions, observes normalizes along dimensions, and E[𝑒] is computed by tensor contraction.
These operations are easily parallelized on modern hardware, making inference efficient.

3.3 Implementation details
A key design consideration for memo was interoperability with scientists’ preferred workflows. A
common source of friction for scientists is shuttling data back and forth between the PPL used for
modeling (e.g. WebPPL), and the scripting language used for data analysis (typically Python, R,
or MATLAB). In fact, many of our colleagues reported manually copy-pasting inputs and outputs
across files, or writing brittle shell scripts to generate and parse log files.

We thus chose to embed memo in Python, building on the JAX array programming library. This
choice had the added benefit of making memo instantly compatible with existing Python tooling
(IDEs, notebooks, . . .), the vast array-programming-based scientific Python ecosystem (including
widely-used packages for data analysis and visualization), and the burgeoning JAX ecosystem
(including packages for deep learning, physics simulation, and reinforcement learning).

To embed memo in Python, we provide an @memo decorator that parses a definition’s source,
translates the resulting Python AST into a memo AST, and sends it to the memo compiler. We
compile the memo AST to a Python program that calls the JAX API. When a memo model is
invoked, the JAX JIT compiler traces the generated Python program and compiles it to native code.

4 APPLICATIONS & EVALUATION
We begin this section by highlighting four classic models from the RR paradigm, using them as
case studies to evaluate memo (§4.1). For each model, we compare a memo implementation to an
existing expert-written implementation in a traditional PPL. We show thatmemo is generally
faster, while requiring less code. Next, we briefly discuss four cognitive science projects that
are currently using memo, highlighting how memo is impacting ongoing research in different
ways (§4.2). Finally, we present two examples that showcase advanced usage of memo, building
models that would be particularly challenging to implement in other PPLs (§4.3).
Our results across all of these models are summarized in Table 1. Following our reasoning in

Section 1.1.2, we measured the total time taken to compute all relevant conditions of each model,
which is the relevant day-to-day workload for practitioners. We excluded the time needed to warm
up JIT compilers, because this fixed cost is far outweighed by the variable cost of model fitting
and cross-validation. Unless otherwise noted, models were timed on the Apple M2 processor. We
also report the number of lines of code (LOC) needed for each model to give a general sense of
the effort needed to implement a model, the surface area for bugs, and the leverage provided by
memo’s domain abstractions. Where relevant, we separate LOC into ℓ = ℓspecific + ℓgeneral where
ℓspecific is code specific to the given problem, and ℓgeneral reflects a general formalism for that type of
problem that could be abstracted to a reusable library (e.g. specific maze + general route planner).
We provide code for all examples in §4.1 and §4.3 in the supplementary materials.

4.1 Case studies
We start with four classic models in the RR paradigm: rational communication, two-player games,
sequential planning, and belief-space reasoning. We compared existing implementations of these
models (sourced from textbooks, documentation, etc.) against re-implementations in memo.

2025-01-08 15:16. Page 13 of 1–26.

14 Kartik Chandra, Tony Chen, Joshua B. Tenenbaum, and Jonathan Ragan-Kelley

Table 1. Summary of models and results discussed in Section 4.

Model Langoriginal LOCoriginal LOCmemo Timeoriginal (s) Timememo (s)

Classic example models, compared to experts’ implementations

RSA (§4.1.1) Pyro 37+122 23 25 0.6
Schelling (§4.1.2) WebPPL 25 15 1.1 0.0058
MDP9×9 (§4.1.3) WebPPL 75 60 12.2 0.48
MDP21×21 WebPPL 75 60 79 6.9
MDP21×21 (GPU) WebPPL 75 60 not supported 0.377
MDP21×21 (inverse) — — 10 — 0.0098
POMDP (§4.1.4) Julia 43+199 30+61 0.025 0.026

Existing in-the-wild models, translated by researchers migrating to memo

Lying (§4.2.1) Gen 220 50 100 5.5 × 10−5
Saliva (§4.2.2) R 125 38 2.13 7.3 × 10−4

New models, freshly written in memo (see supplementary materials for more examples)

Doctor (§4.2.3) — — 120 — 9.2 × 10−5
Care (§4.2.4) — — 50 — 0.433
Fonts (§4.3.1) — — 40+19 — 0.124
Takeaway (§4.3.2) — — 43 — 0.116

Summary of the summary

RSA Schelling MDP9 MDP21 POMDP Lying Saliva
0

100

200

To
ta

l l
in

es
 o

f c
od

e

memo generally requires significantly less code
Original implementation
memo implementation

RSA Schelling MDP9 MDP21 POMDP Lying Saliva

1
100
10K
1M

Sp
ee

du
p

(lo
g)

40× 200×
30×

200×

1×

2,000,000×

3,000×

memo is generally orders of magnitude faster

4.1.1 Scalar implicature. Scalar implicature is a linguistic phenomenon where uttering a weaker
claim is interpreted as implying that a stronger claim is not true [79]. A classic example is how
“some” often implies “not all.” For example, if a speaker says “some of my PLDI submissions were
accepted this year,” then a listener would likely infer that “not all” of the submissions were accepted,
even though it is technically not false to say “some” (i.e. > 0) were accepted when all were.
The Rational Speech Acts framework predicts this phenomenon well [65]. We set utterances

𝑈 = {none, some, all}, referents 𝑅 = {0, 1, . . . , 𝑁 }, and we say that “none” denotes 𝑟 = 0, “some”
denotes 𝑟 > 0, and “all” denotes 𝑟 = 𝑁 . Then, RSA predicts that upon hearing “some,” a listener
would infer 𝑟 to be less than 𝑁 , because if the speaker actually intended to communicate 𝑁 , they
would have said “all” instead of “some.” We compared an implementation of this model taken
directly from the example gallery of the Pyro PPL [23] against the memo implementation we
developed in Section 2. We chose this example because—unlike the “green-circle” communication
game we considered earlier—here it is natural to scale up the size of the problem by scaling up 𝑁 .
As shown in Table 1, the Pyro model is 159 lines of code (37 for the model, 122 for specialized

inference routines), while the memo version is 23 lines with no additional code needed for inference.
At 𝑁 = 104, Pyro takes 25s to perform inference while memo takes only 0.6s.

2025-01-08 15:16. Page 14 of 1–26.

A Domain-Specific Probabilistic Programming Language for Reasoning about Reasoning (or: a memo on memo) 15

function alice(depth) {

return Infer(function () {

var a = sample(prior);

var b = sample(bob(depth -1));

condition(a==b);

return a;

});

};

@memo

def alice[a: Bar](depth):

alice: thinks[

bob: chooses(b in Bar ,

wpp=bob[b](depth -1))]

alice: chooses(a in Bar ,

wpp=prior(a)*Pr[a==bob.b])

return Pr[alice.a==a]

Fig. 7. The Schelling game (§4.1.2) in WebPPL (adapted from a textbook [47]) and idiomatic memo. The “bob”
model (not shown) is defined analogously to “alice” in both PPLs. We also omit the definition of “prior.”

4.1.2 Schelling coordination games. Economist Schelling [116] studied situations where two parties
are forced to coordinate without communicating. In a now-famous experiment, he asked a sample of
36 students to imagine that they had to meet a stranger in New York City, but that no meeting place
or time had been arranged beforehand. Most people said that they would try going to Grand Central
Terminal at noon. This “Schelling point” emerges from recursive reasoning: people reason about
where others are likely to go, which allows them to bootstrap a salient location into an emergent
consensus. Stuhlmüller and Goodman [125] computationally modeled this kind of reasoning with a
pair of mutually-recursive probabilistic programs (“Alice” and “Bob”). They considered a simplified
setting: a town with two bars, one slightly more popular than the other. With just a few levels of
recursion, rational agents converge to overwhelmingly prefer the more popular bar.

We implemented this model in memo, and compared it to an implementation taken directly from
a textbook by Evans et al. [47] (Figure 7). For the purposes of timing, we extended the scenario to
100 bars and considered 100 levels of recursive reasoning. As shown in Table 1, the memo version
is slightly shorter than the WebPPL version (15 lines vs. 25) and much faster (5.8ms vs 1.1sec).

This example is interesting because it highlights the risk of “perpetration confusion” in traditional
PPLs (§1.1.1). The textbook WebPPL implementation happens to give the correct answer in this
case, but a slight variation leads to confusion. Suppose we wanted to predict how confident Alice is
that she will successfully meet Bob. It is tempting to query this by writing a new model alice′ that
infers the probability of a==b rather than the probability of a itself. But this erroneously returns
100%, “optimistically” manipulating Bob to always choose the same bar as Alice. memo, on the other
hand, gives us the correct answer by forcing us to precisely articulate what we wish to compute:
E[alice[Pr[a==bob.b]]], an observer’s expectation of the probability Alice assigns to meeting Bob.

Why do we need to take the observer’s expectation here? This is necessary because the observer
has uncertainty over which bar Alice will choose (which may affect her confidence). It is easy to
overlook this subtlety, but if we had forgotten the outer E[. . .] memo would have statically raised
an error. This is one way memo helps programmers discover hidden assumptions in their models.

Notice also that Alice’s confidence is different from an observer’s own confidence that Alice will
succeed in meeting Bob. To model the latter in memo, we can have an observer model Alice and
Bob choosing 𝑎 and 𝑏 respectively, and then compute Pr[alice.a == bob.b]. Interestingly, we find
that the observer has slightly higher confidence than Alice herself. This is because while Alice at
depth 𝑑 models Bob at depth 𝑑 − 1, the observer at depth 𝑑 models both Alice and Bob at depth 𝑑 .

4.1.3 MDP planning by value iteration. A Markov Decision Process (MDP) is a foundational
formalism used to model sequential decision-making [19]. Abstractly, an MDP describes a space
of states (𝑆) an agent can inhabit, a space of actions (𝐴) the agent can take, a stochastic transition

2025-01-08 15:16. Page 15 of 1–26.

16 Kartik Chandra, Tony Chen, Joshua B. Tenenbaum, and Jonathan Ragan-Kelley

function𝑇 (𝑠′ | 𝑠, 𝑎) describing the dynamics of taking an action 𝑎 at state 𝑠 , and the single-timestep
reward 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡) ∈ R for taking action 𝑎𝑡 from state 𝑠𝑡 . Agents strive to maximize their total
utility

∑∞
𝑡=1 𝛾

𝑡−1𝑟𝑡 , where 𝛾 ∈ [0, 1) is a “discount factor” that expresses how much more valuable
reward is in the present than in the future. An MDP is thus defined by the tuple ⟨𝑆,𝐴,𝑇 , 𝑅,𝛾⟩. We
can implement an MDP in memo by treating the agent as reasoning recursively about itself in the
future. The compiled array program is effectively an implementation of policy iteration.

(a) (b)

(c) (d)

Fig. 8. Planning in a grid-maze MDP. Top:
value function if goal is (a) NW and (b) SE.
Bottom: inferred goal (NW/SE) if agent
moves (c) west and (d) south. (§4.1.3)

We compared our implementation to one in WebPPL
using a maze navigation MDP, a common setting for testing
RR models. We placed an agent in a 9 × 9 maze where
𝑆 was the 81 cells, 𝐴 was the four cardinal directions, 𝑇
represented valid moves, and 𝑅 rewarded reaching a goal
square quickly. To plan routes in this maze, we ran 1000
rounds of policy iteration. As shown in Table 1, theWebPPL
and memo implementations are comparable in length (75
vs. 60 lines of code), but the memo version is 40× faster
(10.3sec vs 0.27sec). When we expanded to a 21 × 21 grid,
WebPPL took 79 seconds (this required us to override an
internal timeout). memo gave the same result in 6.9s.

This is the slowest model in this paper, and thus a good
opportunity to show the value of GPU acceleration inmemo.
On an NVIDIA GeForce RTX 4070, the same computation
takes only 0.377s (no new code needed). Figures 8(ab) show
the computed value function in a 21 × 21 memo-themed
maze with two possible goals: the northwest (NW) and southeast (SE) corners. As expected, the
value function corresponds to the length of the shortest path to the goal.

With this, we can replicate one of themost influential models from computational social cognition:
“inverse planning” [13], which models people’s ability to understand each other’s actions. From a
Bayesian perspective, assuming an agent behaves rationally [61, 83, 84], we can infer its (unknown)
goal based on its (observed) actions. Figures 8(cd) show such inferences made in memo (requiring
only an additional 10 LOC and 9.8ms of inference time). For example, if the agent is located under
the “O,” then its moving one step west gives a strong impression that it is heading to the NW corner
(panel c). However, if the agent is under the lower “M,” then its moving west leaves us uncertain
about its intentions, because it would move west to go to either goal from there (panel d).

4.1.4 POMDP planning in belief space. A Partially-Observable Markov Decision Process (POMDP)
extends the MDP formalism to describe agents who are unsure of their current state [7, 85]. Upon
taking action 𝑎 to reach state 𝑠′, agents receive an observation 𝑜 ∈ Ω with probability 𝑂 (𝑜 | 𝑎, 𝑠′).
A POMDP is thus defined by a tuple ⟨𝑆,𝐴,𝑇 , 𝑅,Ω,𝑂,𝛾⟩. Agents in POMDPs often show “explore-
exploit” behavior, first taking epistemic actions that give informative observations, and later using
that accrued knowledge to efficiently seek reward. A common approach to planning in POMDPs
is belief-space planning: we can transform any POMDP into an extended regular MDP where the
agent’s current belief about the true state is itself a type of “belief state,” and belief-state transitions
are given by the rules of Bayesian belief updating [24].
Here, we considered a classic “hello, world” POMDP, the “crying baby problem” [90]. A baby

can be in either of the two states 𝑆 = {sated, hungry}, and at each timestep the parent can take
any of the three actions 𝐴 = {feed, sing, ignore}. While it is impossible to know the baby’s true
state, the parent observes at each timestep whether the baby is 𝑜 ∈ Ω = {crying, quiet}. We use
the specifications of 𝑇 and 𝑂 provided by Kochenderfer et al. [90]. Abstractly, the optimal solution

2025-01-08 15:16. Page 16 of 1–26.

A Domain-Specific Probabilistic Programming Language for Reasoning about Reasoning (or: a memo on memo) 17

to this POMDP is for the parent to feed the baby if they are confident the baby is hungry, and
otherwise to ignore the baby (but never to sing!).

0.0 0.5 1.0
Belief state, P(hungry)

20

15

10

Lo
ng

-te
rm

 re
wa

rd

Crying baby POMDP solution
feed
sing
ignore

Fig. 9. Replicating Kochenderfer
et al. [90, figure F.10] withmemo.

We took an existing implementation of the crying baby POMDP
[46] and solved it with an off-the-shelf POMDP solver hand-written
and optimized by an expert directly in Julia (i.e. not via automated
inference in a PPL) [6]. We compared this to a memo implementa-
tion. In both cases, we discretized the parent’s belief that the baby
was hungry by uniformly partitioning the interval [0, 1] into 50 pos-
sible belief states. As shown in Table 1, the Julia version required 43
lines to implement the model and 199 lines to implement a POMDP
solver. In contrast, memo required 30 lines to implement the model

and 61 lines to implement a POMDP solver. (A general version of this solver is built-in as a utility
in memo.) The two versions had comparable performance (25ms vs 26ms). The belief-space value
function computed by memo is shown in Figure 9, replicating Kochenderfer et al. [90, figure F.10].

4.2 memo in the wild
Next, we briefly describe four real-world research projects that are currently using memo. We are
grateful to our colleagues for permission to describe their ongoing, early-stage work in this paper.

4.2.1 Lie production. Yi et al. [138] are developing a theory of lying. They designed a simple
experiment where two parties (“liar” and “judge”) each have incomplete information about the
world. The “liar” answers a question from the “judge” and is incentivized to lie—but must be careful
not to get caught. This is a complicated model because there are many different mental states and
beliefs about mental states in play. For example, the liar must reason about what the judge might
know, as well as what the judge thinks the liar knows, and what the judge can infer about the liar
based on what the liar says. Yi et al.’s original model was implemented in the Gen PPL [40]. We
worked with them to re-implement their model in memo. As shown in Table 1, the translation
from Gen to memo shortened the model implementation from 220 to 50 lines of code, and sped up
inference by a factor of about 2,000,000×.1 Perhaps most importantly, memo made it easier for these
researchers to extend their model. They had long intended to build a model of how people detect lies
(“call B.S.”) by inferring over their model of how people produce lies. They had previously budgeted
weeks of effort to implementing such a model, but using memo they were able to implement it
within an hour and confirm that it predicted the phenomena they wished to capture.

4.2.2 Risky saliva sharing. Hung et al. [81] are interested in a computational model of how we
make intuitive judgements of each others’ social relationships based on their actions. For example,
if we see two people sharing a drink, we might have different intuitions about the intimacy of their
relationship depending on whether they share a straw, use two straws, or split the drink into two
separate cups. Surprisingly, even very young children make such inferences from “risky saliva
sharing” [49, 126]. Hung et al. sought to computationally model such judgements. In their model,
two agents choose saliva-sharing actions based on intimacy and risk. Then, a third party infers
the agents’ intimacy based on observed actions. Hung et al. had developed the original version of
their model in the R programming language [82]. We worked with them to rewrite the model in
memo. As shown in Table 1, the translation from R to memo shortened the implementation from
125 to 38 lines of code, and sped up inference by a factor of about 3000×. This in turn sped up
1This dramatic speedup is because the researchers originally implemented all levels of nested inference using Monte Carlo
sampling, which Gen is specialized for. Unfortunately, with multiple levels of recursion this led to a combinatorial explosion
in the number of samples needed (see §1.1.2). In this regime, memo’s exact enumerative inference is much faster. Gen did
not at the time support exact enumerative inference (it was only added in late October 2024, as a debugging feature).

2025-01-08 15:16. Page 17 of 1–26.

18 Kartik Chandra, Tony Chen, Joshua B. Tenenbaum, and Jonathan Ragan-Kelley

statistical analyses (model fitting and cross-validation) from 6 hours to 6 seconds, empowering the
researchers to rapidly iterate on their work in a way that was previously impossible.

4.2.3 Empathatic explanation. Chandra et al. [30] are interested in the role of emotion in doctor-
patient interactions, e.g. how a doctor might explain the cause of a patient’s terminal disease in a
way that minimizes the regret the patient feels about their life choices. The researchers hypothesized
that people expect doctors to take emotion into account, and collected data to test this hypothesis.
They then built a computational model of “empathetic explanation” by combining a recent model of
explanation [29] with recent models of emotion prediction [80] and intervention [35]. As shown in
Table 1, their model is 120 lines of memo and takes 92µs to run. They fit parameters to human data
using an off-the-shelf Adam optimizer [42]. They reported that memo helped them catch subtle
issues in counterfactual reasoning when modeling inferences about causality and regret.

4.2.4 Caregiving. Kleiman-Weiner [88] is interested in studying how parents care for their children.
They considered a simple model where a parent could either let a child work through a problem
themselves, or “take over” and solve the problem on the child’s behalf—at risk of sending their child
the signal that they do not believe in them. In the original Python-based version of this model, they
used a very restrictive analytically-solvable model of the child out of scalability concerns. memo
allowed them to dispense with this restriction, and use a much more flexible model of the child.
The model uses memo’s built-in POMDP library (mentioned in §4.1.4).

4.3 Extensions
We conclude with two demos to showcase new kinds of models that memo has made accessible.

4.3.1 Font design. Seven-segment displays are simple electronic components that are used to
display letters and numbers on appliances like calculators and microwaves. These displays have
seven segments that can be independently turned on or off, for a total of 27 = 128 possible
configurations. When using such displays, designers must take care to use an unambiguous “font.”
For example, if the designer maps “g” to , then the result could be confused for an “9.” In this case,
it could be better to represent capital “G” via (though then there may be a conflict with “6”!).

0 O 1 I

2 Z 9 G

6 B K T

Level 0 speaker
0 O 1 I

2 Z 9 G

6 B K T

Level 1 speaker

Fig. 10. Generating “fonts” for 7seg
displays naïvely (left), and with RSA
(right). See §4.3.1.

We can use RSA to design “fonts” for such displays, setting
𝑈 to be the 27 display configurations and𝑅 to be a set of charac-
ters to display (e.g. the 36 case-insensitive alphanumerics used
in English). The key idea is to apply RSA from the speaker’s
perspective, where the naïve (ℓ = 0) “listener” is modeled us-
ing a computer vision model of optical character recognition.
Because memo is built on JAX, we can draw on its existing
deep learning ecosystem to integrate RSA with deep learning.
Here, we used the Flax [73] library to train a ResNet [72] that
classifies alphanumeric characters in the EMNIST dataset [37].
A naïve strategy for representing a character 𝑟 with a display
setting 𝑢 is to pick the display setting 𝑢 that maximizes the
network’s activation for 𝑟 when given a rendered image of
display setting 𝑢 as input. However, this strategy leads to an
ambiguous “font,” as shown in Figure 10. If we instead use the neural network to model the base
“listener” in RSA, the speaker distinguishes the confusing pairs.

This model runs efficiently (124ms) because memo internally parallelizes rendering and batches
calls to the neural network. This type of deep integration is difficult to achieve with traditional
PPLs, where external functions would have to be called in serial (and potentially re-implemented

2025-01-08 15:16. Page 18 of 1–26.

A Domain-Specific Probabilistic Programming Language for Reasoning about Reasoning (or: a memo on memo) 19

from scratch). While this example is relatively trivial, RR models that reason about other agents’
perception and cognition—using computer vision, graphics engines, physics simulators, and
language models in the loop—are increasingly of interest to the cognitive science community
[20, 28, 32, 39, 98, 144], and there is a growing need for PPLs that allow efficient implementations.

4.3.2 The game of “Takeaway”. People sometimes make inferences about each other from how
much they think. For example, if you ask your friend a tricky puzzle and they immediately give the
correct answer, you might guess that they knew the solution beforehand. Recent work in cognitive
science has sought to model how people take the temporal dynamics of thinking into account
[21, 22, 129], and, as we discussed in §2.5.2, memo is designed to facilitate such models.

1 3 10 20
Number of matchsticks

0.0

0.5

1.0

P(
co

gn
iza

nt
)

Do they know the trick?

Fig. 11. As 𝑛 increases, the ob-
server thinks it is likelier that the
player knows the “trick” (§4.3.2).

Here, we will show a toy model that makes such inferences.
Consider the game of “1-2 Takeaway,” a simplified variant of Nim
[63]. There are 𝑛 matchsticks on a table, and players take turns
removing either 1 or 2 matchsticks. The player to remove the last
matchstick wins. We can easily model this game in memo and
recover the optimal strategy for each 𝑛. It is easy to notice (and to
prove by induction) that the optimal strategy is to leave behind a
multiple of 3 matchsticks. (If 𝑛 is already a multiple of 3 there is no
winning move.) Players who know this “trick” can easily compute
optimal moves even when 𝑛 is large, whereas players who do not
know the trick must traverse an exponentially-growing game tree.

Imagine you see someone sit down for a quick round of Takeaway. They count the 𝑛 matchsticks
and then immediately make an optimal move. How likely is it that they know the “trick”? Our
intuition is that for small 𝑛 (e.g. 1 or 2), it is hard to tell because even without knowing the trick,
it is easy to compute the correct answer. Similarly, if 𝑛 is a multiple of 3 (losing position), then it
is hard to tell because even with the trick the player would effectively have to choose arbitrarily.
However, if 𝑛 ≫ 1 and is not a multiple of 3, then we might begin to suspect that they do know the
trick: it is hard to believe that the player performed the full game-theoretic computations correctly
in such a short time. (Observing additional correct moves would confirm this suspicion.)

We will model this inference by supposing that the player is either cognizant or oblivious of the
trick. If the player is cognizant, they always move optimally. If they are oblivious, they pick the
correct answer as a softmax over the true utility, where the temperature depends on the amount
of computation required (they are noisier if more computation is required). An observer infers
whether the player is cognizant or oblivious based on the move made. The critical line is:
observer: thinks[

player: chooses(m in Move , wpp=

𝜋[n, m](t) if cognizant else exp(𝜋[n, m](t) * 𝛼 / (cost @ 𝜋(t)))]

Here, “cost @ 𝜋(t)” gives the number of FLOPs needed to compute the player’s optimal policy
𝜋 for time horizon 𝑡 , and 𝛼 is a scaling factor to translate FLOPs to units of “mental effort.” As
shown in Figure 11, this indeed makes the predictions described above: unsure for low 𝑛 and 𝑛 ≡ 0
(mod 3), but suspecting the player is cognizant as 𝑛 →∞. Such models were previously extremely
challenging to implement, but in memo this model is 32 lines of code and runs in 116ms.

Summary. memo is expressive enough to encode a wide variety of classic RR models, cutting-
edge real-world models, and exotic new models that would be very difficult to implement in
existing PPLs. memo code is typically shorter than code in traditional PPLs, and often easier to
reason about. Across all of the classic models we considered, memo was faster than expert-written
implementations in traditional PPLs (and was comparable to a bespoke hand-written solver in

2025-01-08 15:16. Page 19 of 1–26.

20 Kartik Chandra, Tony Chen, Joshua B. Tenenbaum, and Jonathan Ragan-Kelley

§4.1.4). The speedup was much more pronounced with cutting-edge real-world models, where
memo was orders of magnitude faster than what researchers had previously implemented.
Though we did not discuss their work here, other researchers are using memo to study phe-

nomena like mutual gaze, multimodal inference, and punishment. One university (not affiliated
with the authors) is offering a spring semester course on social cognition taught in memo. Finally,
the supplementary materials include many additional examples: common patterns like
empowerment [89] and expected information gain [114], classic economic games like Ultimatum
[100], Bayesian Persuasion [86], and “Guess 2/3 of the Mean” [70], and puzzles like Monty Hall
[119], Cheryl’s Birthday [131], Dining Cryptographers [34], and Newcomb’s Paradox [135].

5 LIMITATIONS AND FUTUREWORK
Most of memo’s limitations derive from its array-oriented backend. Because joint distributions are
represented as arrays, memo does not support continuous random variables (unless discretized),
and only supports control flow where the sequence of choices (i.e. array axes) is known statically.
These limitations are rarely issues for typical real-world RR models. Nonetheless, we are interested
in exploring alternate (or hybrid) inference backends that do support these features.

Besides improving memo, we are also interested in using it to approach longstanding scientific
questions about language and theory of mind. For example, evidence from deaf children’s use of
sign language suggests that learning language for theory of mind may be critical for being able
to reason about false beliefs [41, 99, 107, 108, 117]. Could analyzing the effect of memo’s domain
abstractions help us understand the power specialized language buys for theory of mind? Similarly,
it is hotly debated whether large language models (LLMs) have human-like theory of mind [127].
Could using memo as a “language of thought” [51] of thought improve LLMs’ theory of mind, like
how access to code, theorem provers, and PPLs improves other types of reasoning [105, 136, 142]?

6 ADDITIONAL RELATEDWORK
We discussed key related work in Section 1. In addition, memo relates to two lines of work.

First, there has been a recent revival of interest in scaling exact discrete inference, in languages
like Dice [78], SPPL [115], and Genfer [141]. HyBit even “bit-blasts” continuous variables to discrete
ones [57]. FSPN [124] and PERPL [36] allow for exact inference in the presence of recursion. These
languages seek to scale to arbitrary probabilistic programs by cleverly factoring problem structure.
A key insight in memo is that for the narrow domain of real-world RR models, one can instead scale
by running a relatively straightforward algorithm efficiently on modern parallel hardware (§1.2.2).
Second, memo relates to work on epistemic logics [14, 48, 71, 75, 132] and Belief-Desire-

Intention logics [59, 60, 137], which have long been applied in domains like economics [9–11] and
computer security [18, 26] to reason about agents’ knowledge and beliefs. memo takes inspiration
from these logics, but builds on the Bayesian tradition of modeling degrees of belief via probabilities.
While epistemic logics are primarily used to prove general statements about the nature of knowledge,
memo is meant for computing numerical predictions about human behavior in specific scenarios.

Finally, for the sake of transparency, we note that a two-page extended abstract of this paper is
concurrently under review for presentation at a non-archival workshop [4, anon. ref.].

7 FINAL THOUGHTS
Throughout this paper, we drew liberally from classic literature in cognitive science, linguistics,
behavioral economics and AI for examples and case studies. We did this in part to show off memo
in a realistic context, but also in part to offer the PL community a glimpse into the many interesting
problems raised by theory of mind. We believe this is an exciting, impactful space, and we hope
this paper broadly inspires new lines of work on PL for the RR paradigm.

2025-01-08 15:16. Page 20 of 1–26.

A Domain-Specific Probabilistic Programming Language for Reasoning about Reasoning (or: a memo on memo) 21

REFERENCES
[1] Sam Acquaviva, Yewen Pu, Marta Kryven, Theodoros Sechopoulos, Catherine Wong, Gabrielle Ecanow, Maxwell Nye,

Michael Tessler, and Josh Tenenbaum. 2022. Communicating natural programs to humans and machines. Advances
in Neural Information Processing Systems 35 (2022), 3731–3743.

[2] Nitay Alon, Lion Schulz, Joseph M Barnby, Jeffrey S Rosenschein, and Peter Dayan. 2024. Detecting and Deterring
Manipulation in a Cognitive Hierarchy. arXiv preprint arXiv:2405.01870 (2024).

[3] Nitay Alon, Lion Schulz, Vaughan Bell, Michael Moutoussis, Peter Dayan, and Joseph M Barnby. 2024. (Mal) adaptive
Mentalizing in the Cognitive Hierarchy, and Its Link to Paranoia. Computational Psychiatry 8, 1 (2024), 159.

[4] Anonymized. 2025. A Domain-Specific Probabilistic Programming Language for Reasoning about Reasoning. Sub-
mission to LAFI workshop (2025).

[5] Anonymized. 2025. Semantics of the memo probabilistic programming language. Submission to LAFI workshop (2025).
[6] Dylan Asmar. 2024. . https://github.com/JuliaPOMDP/BeliefGridValueIteration.jl
[7] Karl Johan Åström. 1965. Optimal control of Markov processes with incomplete state information I. Journal of

mathematical analysis and applications 10 (1965), 174–205.
[8] Robert J Aumann. 1987. Correlated equilibrium as an expression of Bayesian rationality. Econometrica: Journal of the

Econometric Society (1987), 1–18.
[9] Robert J Aumann. 1999. Interactive epistemology I: knowledge. International Journal of Game Theory 28 (1999),

263–300.
[10] Robert J Aumann. 1999. Interactive epistemology II: probability. International Journal of Game Theory 28 (1999),

301–314.
[11] Robert J Aumann. 2016. Agreeing to disagree. Springer.
[12] Chris Baker, Rebecca Saxe, and Joshua Tenenbaum. 2011. Bayesian theory of mind: Modeling joint belief-desire

attribution. In Proceedings of the annual meeting of the cognitive science society, Vol. 33.
[13] Chris L Baker, Rebecca Saxe, and Joshua B Tenenbaum. 2009. Action understanding as inverse planning. Cognition

113, 3 (2009), 329–349.
[14] Alexandru Baltag and Lawrence S Moss. 2004. Logics for epistemic programs. Synthese 139 (2004), 165–224.
[15] JM Barnby, G Bellucci, N Alon, L Schilbach, CD Frith, and V Bell. 2024. Beyond Theory of Mind: A formal interoperable

framework for social inference and representation. (2024).
[16] Andrew G Barto, Steven J Bradtke, and Satinder P Singh. 1995. Learning to act using real-time dynamic programming.

Artificial intelligence 72, 1-2 (1995), 81–138.
[17] Peter W Battaglia, Jessica B Hamrick, and Joshua B Tenenbaum. 2013. Simulation as an engine of physical scene

understanding. Proceedings of the National Academy of Sciences 110, 45 (2013), 18327–18332.
[18] Francesco Belardinelli, Ioana Boureanu, Vadim Malvone, and Fortunat Rajaona. 2024. An SMT-based Approach to

the Verification of Knowledge-Based Programs. Formal Aspects of Computing (2024).
[19] Richard Bellman. 1957. A Markovian decision process. Journal of mathematics and mechanics (1957), 679–684.
[20] Marlene Berke, Zhangir Azerbayev, Mario Belledonne, Zenna Tavares, and Julian Jara-Ettinger. 2024. MetaCOG:

A Heirarchical Probabilistic Model for Learning Meta-Cognitive Visual Representations. In The 40th Conference on
Uncertainty in Artificial Intelligence.

[21] Marlene Berke, Ben Sterling, Abi Tenenbaum, and Julian Jara-Ettinger. 2024. No signatures of first-person simulation
in Theory of Mind judgments about thinking. In Proceedings of the Annual Meeting of the Cognitive Science Society,
Vol. 46.

[22] Marlene Berke, Abigail Tenenbaum, Benjamin Sterling, and Julian Jara-Ettinger. 2023. Thinking about thinking as
rational computation. In Proceedings of the Annual Conference of the Cognitive Science Society. escholarship. org.

[23] Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit
Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman. 2019. Pyro: Deep universal probabilistic programming.
Journal of machine learning research 20, 28 (2019), 1–6.

[24] Blai Bonet and Hector Geffner. 2000. Planning with incomplete information as heuristic search in belief space. In
Proceedings of the Fifth International Conference on Artificial Intelligence Planning Systems. 52–61.

[25] Matthew Botvinick and Marc Toussaint. 2012. Planning as inference. Trends in cognitive sciences 16, 10 (2012),
485–488.

[26] Michael Burrows, Martin Abadi, and Roger Needham. 1990. A logic of authentication. ACM Transactions on Computer
Systems (TOCS) 8, 1 (1990), 18–36.

[27] Colin F Camerer, Teck-Hua Ho, and Juin-Kuan Chong. 2004. A cognitive hierarchy model of games. The Quarterly
Journal of Economics 119, 3 (2004), 861–898.

[28] Matthew Caren, Kartik Chandra, Josh Tenenbaum, Jonathan Ragan-Kelley, and Karima Ma. 2024. Sketching With
Your Voice: “Non-Phonorealistic” Rendering of Sounds via Vocal Imitation. In SIGGRAPH Asia. https://doi.org/10.
1145/3680528.3687679

2025-01-08 15:16. Page 21 of 1–26.

https://github.com/JuliaPOMDP/BeliefGridValueIteration.jl
https://doi.org/10.1145/3680528.3687679
https://doi.org/10.1145/3680528.3687679

22 Kartik Chandra, Tony Chen, Joshua B. Tenenbaum, and Jonathan Ragan-Kelley

[29] Kartik Chandra, Tony Chen, Tzu-Mao Li, Jonathan Ragan-Kelley, and Josh Tenenbaum. 2024. Cooperative Explanation
as Rational Communication. In Proceedings of the Annual Meeting of the Cognitive Science Society, Vol. 46.

[30] Kartik Chandra, Katie Collines, Jonathan Ragan-Kelley, and Josh Tenenbaum. 2024. Empathy in Explanation. In
preparation (2024).

[31] Kartik Chandra, Tzu-Mao Li, Rachit Nigam, Joshua Tenenbaum, and Jonathan Ragan-Kelley. 2024. Watchat: Explaining
perplexing programs by debugging mental models. arXiv preprint arXiv:2403.05334 (2024).

[32] Kartik Chandra, Tzu-Mao Li, Joshua Tenenbaum, and Jonathan Ragan-Kelley. 2022. Designing perceptual puzzles by
differentiating probabilistic programs. In ACM SIGGRAPH 2022 Conference Proceedings. 1–9.

[33] Kartik Chandra, Tzu-Mao Li, Joshua Tenenbaum, and Jonathan Ragan-Kelley. 2023. Acting as inverse inverse planning.
In Acm siggraph 2023 conference proceedings. 1–12.

[34] David Chaum. 1988. The dining cryptographers problem: Unconditional sender and recipient untraceability. Journal
of cryptology 1 (1988), 65–75.

[35] Tony Chen, Sean Dae Houlihan, Kartik Chandra, Josh Tenenbaum, and Rebecca Saxe. 2024. Intervening on Emotions
by Planning Over a Theory of Mind. In Proceedings of the Annual Meeting of the Cognitive Science Society, Vol. 46.

[36] David Chiang, Colin McDonald, and Chung-chieh Shan. 2023. Exact recursive probabilistic programming. Proceedings
of the ACM on Programming Languages 7, OOPSLA1 (2023), 665–695.

[37] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. 2017. EMNIST: Extending MNIST to
handwritten letters. In 2017 international joint conference on neural networks (IJCNN). IEEE, 2921–2926.

[38] Katherine M Collins, Ilia Sucholutsky, Umang Bhatt, Kartik Chandra, Lionel Wong, Mina Lee, Cedegao E Zhang, Tan
Zhi-Xuan, Mark Ho, Vikash Mansinghka, et al. 2024. Building machines that learn and think with people. Nature
Human Behaviour 8, 10 (2024), 1851–1863.

[39] Sholei Croom, Hanbei Zhou, and Chaz Firestone. 2023. Seeing and understanding epistemic actions. Proceedings of
the National Academy of Sciences 120, 49 (2023), e2303162120.

[40] Marco F Cusumano-Towner, Feras A Saad, Alexander K Lew, and Vikash K Mansinghka. 2019. Gen: a general-purpose
probabilistic programming system with programmable inference. In Proceedings of the 40th acm sigplan conference on
programming language design and implementation. 221–236.

[41] Jill G De Villiers and Jennie E Pyers. 2002. Complements to cognition: A longitudinal study of the relationship
between complex syntax and false-belief-understanding. Cognitive development 17, 1 (2002), 1037–1060.

[42] DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter Buchlovsky, David
Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Claudio Fantacci, Jonathan Godwin, Chris Jones,
Ross Hemsley, Tom Hennigan, Matteo Hessel, Shaobo Hou, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael
King, Markus Kunesch, Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios,
John Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent Sartran, Rosalia Schneider, Eren Sezener, Stephen
Spencer, Srivatsan Srinivasan, Miloš Stanojević, Wojciech Stokowiec, Luyu Wang, Guangyao Zhou, and Fabio Viola.
2020. The DeepMind JAX Ecosystem. http://github.com/google-deepmind

[43] Judith Degen. 2023. The rational speech act framework. Annual Review of Linguistics 9, 1 (2023), 519–540.
[44] Daniel C Dennett. 1989. The intentional stance. MIT press.
[45] Anca D Dragan, Kenton CT Lee, and Siddhartha S Srinivasa. 2013. Legibility and predictability of robot motion. In

2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 301–308.
[46] Maxim Egorov, Zachary N. Sunberg, Edward Balaban, Tim A. Wheeler, Jayesh K. Gupta, and Mykel J. Kochenderfer.

2017. POMDPs.jl: A Framework for Sequential Decision Making under Uncertainty. Journal of Machine Learning
Research 18, 26 (2017), 1–5. http://jmlr.org/papers/v18/16-300.html

[47] Owain Evans, Andreas Stuhlmüller, John Salvatier, and Daniel Filan. 2017. Modeling Agents with Probabilistic
Programs. http://agentmodels.org. Accessed: 2024-3-8.

[48] Ronald Fagin, Joseph Y Halpern, Yoram Moses, and Moshe Vardi. 2004. Reasoning about knowledge. MIT press.
[49] Christine Fawcett. 2022. Kids attend to saliva sharing to infer social relationships. Science 375, 6578 (2022), 260–261.
[50] Jaime F Fisac, Monica A Gates, Jessica B Hamrick, Chang Liu, Dylan Hadfield-Menell, Malayandi Palaniappan, Dhruv

Malik, S Shankar Sastry, Thomas L Griffiths, and Anca D Dragan. 2020. Pragmatic-pedagogic value alignment. In
Robotics research: the 18th international symposium Isrr. Springer, 49–57.

[51] JA Fodor. 1975. The language of thought.
[52] Michael C Frank and Noah D Goodman. 2012. Predicting pragmatic reasoning in language games. Science 336, 6084

(2012), 998–998.
[53] Michael Franke and Judith Degen. 2023. The softmax function: Properties, motivation, and interpretation. (2023).
[54] Michael Franke and Gerhard Jäger. 2016. Probabilistic pragmatics, or why Bayes’ rule is probably important for

pragmatics. Zeitschrift für sprachwissenschaft 35, 1 (2016), 3–44.
[55] Michael Franke and Gerhard Jäger. 2016. Reply to commentaries. Zeitschrift für Sprachwissenschaft 35, 1 (2016),

117–132.

2025-01-08 15:16. Page 22 of 1–26.

http://github.com/google-deepmind
http://jmlr.org/papers/v18/16-300.html
http://agentmodels.org

A Domain-Specific Probabilistic Programming Language for Reasoning about Reasoning (or: a memo on memo) 23

[56] Gottlob Frege. 1892. On sense and reference.
[57] Poorva Garg, Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2024. Bit Blasting Probabilistic Programs.

Proceedings of the ACM on Programming Languages 8, PLDI (2024), 865–888.
[58] Albert Gatt, Roger PG van Gompel, Kees van Deemter, and Emiel Krahmer. 2013. Are we Bayesian referring expression

generators. Cognitive Science Society.
[59] Michael Georgeff, Barney Pell, Martha Pollack, Milind Tambe, and Michael Wooldridge. 1999. The belief-desire-

intention model of agency. In Intelligent Agents V: Agents Theories, Architectures, and Languages: 5th International
Workshop, ATAL’98 Paris, France, July 4–7, 1998 Proceedings 5. Springer, 1–10.

[60] Michael P Georgeff and Amy L Lansky. 1987. Reactive reasoning and planning.. In AAAI, Vol. 87. 677–682.
[61] György Gergely and Gergely Csibra. 2003. Teleological reasoning in infancy: The naıve theory of rational action.

Trends in cognitive sciences 7, 7 (2003), 287–292.
[62] Tobias Gerstenberg, Matthew F Peterson, Noah D Goodman, David A Lagnado, and Joshua B Tenenbaum. 2017.

Eye-tracking causality. Psychological science 28, 12 (2017), 1731–1744.
[63] Solomon W Golomb. 1966. A mathematical investigation of games of "take-away". Journal of Combinatorial Theory 1,

4 (1966), 443–458.
[64] Noah D Goodman and Michael C Frank. 2016. Pragmatic language interpretation as probabilistic inference. Trends in

cognitive sciences 20, 11 (2016), 818–829.
[65] Noah D Goodman and Andreas Stuhlmüller. 2013. Knowledge and implicature: Modeling language understanding as

social cognition. Topics in cognitive science 5, 1 (2013), 173–184.
[66] Noah D Goodman and Andreas Stuhlmüller. 2014. The Design and Implementation of Probabilistic Programming

Languages. http://dippl.org. Accessed: 2024-10-29.
[67] Noah D Goodman, Joshua B. Tenenbaum, and The ProbMods Contributors. 2016. Probabilistic Models of Cognition.

http://probmods.org/v2. Accessed: 2024-10-22.
[68] HP Grice. 1975. Logic and conversation. Syntax and semantics 3 (1975).
[69] Thomas L Griffiths, Nick Chater, and Joshua B Tenenbaum. 2024. Bayesian models of cognition: reverse engineering the

mind. MIT Press.
[70] Werner Güth, Rolf Schmittberger, and Bernd Schwarze. 1982. An experimental analysis of ultimatum bargaining.

Journal of economic behavior & organization 3, 4 (1982), 367–388.
[71] Joseph Y Halpern. 2017. Reasoning about uncertainty. MIT press.
[72] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778.
[73] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas Steiner, and Marc van

Zee. 2024. Flax: A neural network library and ecosystem for JAX. http://github.com/google/flax
[74] Fritz Heider and Marianne Simmel. 1944. An experimental study of apparent behavior. The American journal of

psychology 57, 2 (1944), 243–259.
[75] Kaarlo Jaakko Juhani Hintikka. 1962. Knowledge and belief: An introduction to the logic of the two notions. (1962).
[76] Mark K Ho, Fiery Cushman, Michael L Littman, and Joseph L Austerweil. 2021. Communication in action: Planning

and interpreting communicative demonstrations. Journal of Experimental Psychology: General 150, 11 (2021), 2246.
[77] Mark K Ho, Rebecca Saxe, and Fiery Cushman. 2022. Planning with theory of mind. Trends in Cognitive Sciences 26,

11 (2022), 959–971.
[78] Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2020. Scaling exact inference for discrete probabilistic

programs. Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 1–31.
[79] Laurence R Horn and Gregory L Ward. 2004. The handbook of pragmatics. Wiley Online Library.
[80] Sean Dae Houlihan, Max Kleiman-Weiner, Luke B Hewitt, Joshua B Tenenbaum, and Rebecca Saxe. 2023. Emotion

prediction as computation over a generative theory of mind. Philosophical Transactions of the Royal Society A 381,
2251 (2023), 20220047.

[81] Michelle Simona Hung, Ashley J Thomas, Setayesh Radkani, Josh Tenenbaum, and Rebecca Saxe. 2022. Modeling
risky food sharing as rational communication about relationships. In Proceedings of the annual meeting of the cognitive
science society, Vol. 44.

[82] Ross Ihaka and Robert Gentleman. 1996. R: a language for data analysis and graphics. Journal of computational and
graphical statistics 5, 3 (1996), 299–314.

[83] Julian Jara-Ettinger, Hyowon Gweon, Laura E Schulz, and Joshua B Tenenbaum. 2016. The naïve utility calculus:
Computational principles underlying commonsense psychology. Trends in cognitive sciences 20, 8 (2016), 589–604.

[84] Julian Jara-Ettinger, Hyowon Gweon, Joshua B Tenenbaum, and Laura E Schulz. 2015. Children’s understanding of
the costs and rewards underlying rational action. Cognition 140 (2015), 14–23.

[85] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. 1998. Planning and acting in partially observable
stochastic domains. Artificial intelligence 101, 1-2 (1998), 99–134.

2025-01-08 15:16. Page 23 of 1–26.

http://dippl.org
http://probmods.org/v2
http://github.com/google/flax

24 Kartik Chandra, Tony Chen, Joshua B. Tenenbaum, and Jonathan Ragan-Kelley

[86] Emir Kamenica and Matthew Gentzkow. 2011. Bayesian persuasion. American Economic Review 101, 6 (2011),
2590–2615.

[87] Justine T Kao, Jean Y Wu, Leon Bergen, and Noah D Goodman. 2014. Nonliteral understanding of number words.
Proceedings of the National Academy of Sciences 111, 33 (2014), 12002–12007.

[88] Max Kleiman-Weiner. 2024. Computational Principles of Caregiving. In Proceedings of the Annual Meeting of the
Cognitive Science Society, Vol. 46.

[89] Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. 2005. All else being equal be empowered. In
European Conference on Artificial Life. Springer, 744–753.

[90] Mykel J Kochenderfer, Tim A Wheeler, and Kyle H Wray. 2022. Algorithms for decision making. MIT press.
[91] Joe Kwon, Tan Zhi-Xuan, Joshua Tenenbaum, and Sydney Levine. 2023. When it is not out of line to get out of line:

The role of universalization and outcome-based reasoning in rule-breaking judgments. (2023).
[92] Sergey Levine. 2018. Reinforcement learning and control as probabilistic inference: Tutorial and review. arXiv

preprint arXiv:1805.00909 (2018).
[93] David Lewis. 1969. Convention: A philosophical study. John Wiley & Sons.
[94] Falk Lieder and Thomas L Griffiths. 2020. Resource-rational analysis: Understanding human cognition as the optimal

use of limited computational resources. Behavioral and brain sciences 43 (2020), e1.
[95] R Duncan Luce. 1959. Individual choice behavior. Vol. 4. Wiley New York.
[96] Wei Ji Ma, Konrad Paul Kording, and Daniel Goldreich. 2023. Bayesian models of perception and action: An introduction.

MIT press.
[97] Manasi Malik and Leyla Isik. 2023. Relational visual representations underlie human social interaction recognition.

Nature Communications 14, 1 (2023), 7317.
[98] Matan Mazor, Rani Moran, and Clare Press. 2024. The role of counterfactual visibility in inference about absence. In

Proceedings of the Annual Meeting of the Cognitive Science Society, Vol. 46.
[99] Gary Morgan and Judy Kegl. 2006. Nicaraguan sign language and theory of mind: The issue of critical periods and

abilities. Journal of Child Psychology and Psychiatry 47, 8 (2006), 811–819.
[100] Rosemarie Nagel. 1995. Unraveling in guessing games: An experimental study. The American economic review 85, 5

(1995), 1313–1326.
[101] Andrew Y Ng, Stuart Russell, et al. 2000. Algorithms for inverse reinforcement learning.. In ICML, Vol. 1. 2.
[102] Robert Nozick. 1969. Newcomb’s problem and two principles of choice. In Essays in honor of carl g. hempel: A tribute

on the occasion of his sixty-fifth birthday. Springer, 114–146.
[103] Fritz Obermeyer, Eli Bingham, Martin Jankowiak, Neeraj Pradhan, Justin Chiu, Alexander Rush, and Noah Goodman.

2019. Tensor variable elimination for plated factor graphs. In International Conference on Machine Learning. PMLR,
4871–4880.

[104] Jingwen Pan and Amir Shaikhha. 2023. Compiling Discrete Probabilistic Programs for Vectorized Exact Inference. In
Proceedings of the 32nd ACM SIGPLAN International Conference on Compiler Construction. 13–24.

[105] Jackson Petty, Sjoerd van Steenkiste, and Tal Linzen. 2024. How Does Code Pretraining Affect Language Model Task
Performance? arXiv preprint arXiv:2409.04556 (2024).

[106] Yewen Pu, Kevin Ellis, Marta Kryven, Josh Tenenbaum, and Armando Solar-Lezama. 2020. Program synthesis with
pragmatic communication. Advances in neural information processing systems 33 (2020), 13249–13259.

[107] Jennie E Pyers. 2020. Constructing the social mind: Language and false-belief understanding. In Roots of human
sociality. Routledge, 207–228.

[108] Jennie E Pyers and Ann Senghas. 2009. Language promotes false-belief understanding: Evidence from learners of a
new sign language. Psychological science 20, 7 (2009), 805–812.

[109] Ciyang Qing and Michael Franke. 2015. Variations on a Bayesian theme: Comparing Bayesian models of referential
reasoning. Bayesian natural language semantics and pragmatics (2015), 201–220.

[110] WVO Quine. 1960. Word and object. (1960).
[111] Setayesh Radkani and Rebecca Saxe. 2023. What people learn from punishment: joint inference of wrongness and

punisher’s motivations from observation of punitive choices. In Proceedings of the annual meeting of the cognitive
science society, Vol. 45.

[112] Setayesh Radkani, Josh Tenenbaum, and Rebecca Saxe. 2022. Modeling punishment as a rational communicative
social action. In Proceedings of the annual meeting of the cognitive science society, Vol. 44.

[113] Anna N Rafferty, Emma Brunskill, Thomas L Griffiths, and Patrick Shafto. 2016. Faster teaching via pomdp planning.
Cognitive science 40, 6 (2016), 1290–1332.

[114] Anselm Rothe, Brenden M Lake, and Todd M Gureckis. 2018. Do people ask good questions? Computational Brain &
Behavior 1 (2018), 69–89.

[115] Feras A Saad, Martin C Rinard, and Vikash K Mansinghka. 2021. SPPL: probabilistic programming with fast exact
symbolic inference. In Proceedings of the 42nd acm sigplan international conference on programming language design

2025-01-08 15:16. Page 24 of 1–26.

A Domain-Specific Probabilistic Programming Language for Reasoning about Reasoning (or: a memo on memo) 25

and implementation. 804–819.
[116] Thomas C Schelling. 1958. The strategy of conflict. Prospectus for a reorientation of game theory. Journal of Conflict

Resolution 2, 3 (1958), 203–264.
[117] Brenda Schick, Peter De Villiers, Jill De Villiers, and Robert Hoffmeister. 2007. Language and theory of mind: A study

of deaf children. Child development 78, 2 (2007), 376–396.
[118] Gregory Scontras, Michael Henry Tessler, and Michael Franke. 2018. Probabilistic language understanding: An

introduction to the Rational Speech Act framework. Retrieved January 17 (2018), 2021. https://www.problang.org
[119] Steve Selvin. 1975. A problem in probability. The American Statistician 29, 1 (1975).
[120] Patrick Shafto, Noah D Goodman, and Thomas L Griffiths. 2014. A rational account of pedagogical reasoning:

Teaching by, and learning from, examples. Cognitive psychology 71 (2014), 55–89.
[121] Jeffrey Mark Siskind and Barak A Pearlmutter. 2005. Perturbation confusion and referential transparency: Correct

functional implementation of forward-mode AD. (2005).
[122] Stephanie Stacy, Siyi Gong, Aishni Parab, Minglu Zhao, Kaiwen Jiang, and Tao Gao. 2024. A Bayesian theory of mind

approach to modeling cooperation and communication. Wiley Interdisciplinary Reviews: Computational Statistics 16,
1 (2024), e1631.

[123] Dale O Stahl and Paul W Wilson. 1995. On players’ models of other players: Theory and experimental evidence.
Games and Economic Behavior 10, 1 (1995), 218–254.

[124] Andreas Stuhlmüller and Noah D Goodman. 2012. A dynamic programming algorithm for inference in recursive
probabilistic programs. arXiv preprint arXiv:1206.3555 (2012).

[125] Andreas Stuhlmüller and Noah D Goodman. 2014. Reasoning about reasoning by nested conditioning: Modeling
theory of mind with probabilistic programs. Cognitive Systems Research 28 (2014), 80–99.

[126] Ashley J Thomas, Brandon Woo, Daniel Nettle, Elizabeth Spelke, and Rebecca Saxe. 2022. Early concepts of intimacy:
Young humans use saliva sharing to infer close relationships. Science 375, 6578 (2022), 311–315.

[127] Tomer Ullman. 2023. Large language models fail on trivial alterations to theory-of-mind tasks. arXiv preprint
arXiv:2302.08399 (2023).

[128] Tomer Ullman, Chris Baker, Owen Macindoe, Owain Evans, Noah Goodman, and Joshua Tenenbaum. 2009. Help or
hinder: Bayesian models of social goal inference. Advances in neural information processing systems 22 (2009).

[129] Tomer D Ullman and Ilona Bass. 2024. The Detection of Automatic Behavior in Other People. (2024).
[130] Priyan Vaithilingam, Yewen Pu, and Elena L Glassman. 2023. The Usability of Pragmatic Communication in Regular

Expression Synthesis. arXiv preprint arXiv:2308.06656 (2023).
[131] Hans van Ditmarsch, Michael Ian Hartley, Barteld Kooi, JonathanWelton, and Joseph BW Yeo. 2017. Cheryl’s Birthday.

arXiv preprint arXiv:1708.02654 (2017).
[132] Hans Van Ditmarsch, Wiebe van Der Hoek, and Barteld Kooi. 2007. Dynamic epistemic logic. Vol. 337. Springer

Science & Business Media.
[133] Edward Vul, Noah Goodman, Thomas L Griffiths, and Joshua B Tenenbaum. 2014. One and done? Optimal decisions

from very few samples. Cognitive science 38, 4 (2014), 599–637.
[134] JuliaWhite, Jesse Mu, and Noah D Goodman. 2020. Learning to refer informatively by amortizing pragmatic reasoning.

arXiv preprint arXiv:2006.00418 (2020).
[135] David H Wolpert and Gregory Benford. 2013. The lesson of Newcomb’s paradox. Synthese 190 (2013), 1637–1646.
[136] Lionel Wong, Gabriel Grand, Alexander K Lew, Noah D Goodman, Vikash KMansinghka, Jacob Andreas, and Joshua B

Tenenbaum. 2023. Fromword models to world models: Translating from natural language to the probabilistic language
of thought. arXiv preprint arXiv:2306.12672 (2023).

[137] Michael Wooldridge. 2003. Reasoning about rational agents. MIT press.
[138] Tan Zhi Yi, Julian Jara-Ettinger, and Marlene Berke. 2024. Reasoning about knowledge in lie production. (2024).

https://osf.io/4mu8v/download CogSci.
[139] Erica J Yoon, Michael Henry Tessler, Noah D Goodman, and Michael C Frank. 2020. Polite speech emerges from

competing social goals. Open Mind 4 (2020), 71–87.
[140] Frances Yung, Jana Jungbluth, and Vera Demberg. 2021. Limits to the rational production of discourse connectives.

Frontiers in Psychology 12 (2021), 660730.
[141] Fabian Zaiser, Andrzej Murawski, and Chih-Hao Luke Ong. 2024. Exact Bayesian inference on discrete models via

probability generating functions: a probabilistic programming approach. Advances in Neural Information Processing
Systems 36 (2024).

[142] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. 2022. Star: Bootstrapping reasoning with reasoning.
Advances in Neural Information Processing Systems 35 (2022), 15476–15488.

[143] Yizhou Zhang and Nada Amin. 2022. Reasoning about “reasoning about reasoning”: semantics and contextual
equivalence for probabilistic programs with nested queries and recursion. Proceedings of the ACM on Programming
Languages 6, POPL (2022), 1–28.

2025-01-08 15:16. Page 25 of 1–26.

https://www.problang.org
https://osf.io/4mu8v/download

26 Kartik Chandra, Tony Chen, Joshua B. Tenenbaum, and Jonathan Ragan-Kelley

[144] Tan Zhi-Xuan, Lance Ying, Vikash Mansinghka, and Joshua B Tenenbaum. 2024. Pragmatic Instruction Following
and Goal Assistance via Cooperative Language-Guided Inverse Planning. arXiv preprint arXiv:2402.17930 (2024).

[145] Liang Zhou, Kevin A Smith, Joshua B Tenenbaum, and Tobias Gerstenberg. 2023. Mental jenga: A counterfactual
simulation model of causal judgments about physical support. Journal of Experimental Psychology: General 152, 8
(2023), 2237.

2025-01-08 15:16. Page 26 of 1–26.

	Abstract
	1 Introduction
	1.1 Motivating memo: the two challenges
	1.2 memo's design: the two insights

	2 A demo of memo
	2.1 Introducing the Rational Speech Acts framework, our running example
	2.2 First steps: expressing the ``base case'' of a naïve listener in memo
	2.3 Completing the model: adding recursive reasoning
	2.4 Using our model: a peek into the scientist's workflow
	2.5 The rest of the language

	3 Design & Implementation
	3.1 Front-end: tracking ``frames of mind''
	3.2 Back-end: lowering memo to an array program
	3.3 Implementation details

	4 Applications & Evaluation
	4.1 Case studies
	4.2 memo in the wild
	4.3 Extensions

	5 Limitations and future work
	6 Additional related work
	7 Final thoughts
	References

